Answer:
= 2630.6 N.m
Explanation:
(FR)x = ΣFx = -F4 = -407 N
(FR)y = ΣFy =-F1-F2 -F3 = -510 - 306 - 501 = -1317 N
(MR)B =ΣM + Σ(±Fd)
= MA + F1(d1 +d2) + F2d2 - F4d3
= 1504 + 510(0.880+1.11) +306(1.11) - 407(0.560)
= 2630.64 N.m (counterclockwise)
Here light ray strikes to interface at an angle of 45 degree and then refracts into other medium such that it will bend towards boundary.
So here the angle of incidence will be less than the angle of refraction as light moves towards the boundary after refraction which mean it will bend away from the normal
here it can be said that medium 2 will be rarer then medium 1
So here the possible options are
1. Water
Air
2. Diamond
Air
So in above two options medium 1 is denser and medium 2 is rarer
Answer: the earth
Explanation: ask your teacher
Answer:
1.5 m
Explanation:
Let the distance from the box to the pivot be c.
Let the distance from the pivot to the effort be y.
From the question given above, the following data were obtained:
Effort force (Fₑ) = 7 N
Force of resistance (Fᵣ) = 14 N
Distance from the box to the pivot (c) = 0.75 m
Distance from the pivot to the effort (y) =?
Clockwise moment = Fₑ × y
Anticlock wise moment = Fᵣ × c
Clockwise moment = Anticlock wise moment
Fₑ × y = Fᵣ × c
7 × y = 14 × 0.75
7 × y = 10.5
Divide both side by 7
y = 10.5 / 7
y = 1.5 m
Therefore, the distance from the pivot to the effort is 1.5 m
Answer:
space = 66.24 [m]
Explanation:
To solve this problem we must remember that the average speed is defined as the relationship between a space traveled over a certain time.

where:
space [m]
Av = average velocity = 3.6 [m/s]
time = 18.4 [s]
![space = 3.6*18.4\\space = 66.24 [m]](https://tex.z-dn.net/?f=space%20%3D%203.6%2A18.4%5C%5Cspace%20%3D%2066.24%20%5Bm%5D)