In this item, it is unfortunate that a figure, drawing, or illustration is not given. To be able to answer this, it is assumed that these segments are collinear. Points L, M, and N are collinear, and that L lies between MN.
The length of the whole segment MN is the sum of the length of the subsegments, LN and LM. This can be mathematically expressed,
LN + LM = MN
We are given with the lengths of the smalller segments and substituting the known values,
MN = 54 + 31
MN = 85
<em>ANSWER: MN = 85</em>
I would but I don’t want to ;/
Yep, this one seems sneaky and confusing. But it's not so bad if you remember the things you learned about parallel lines. (It can't be too tough ... I learned them
in 1954 and I still know how to use them.)
Look at the picture. Line ' l ' is parallel to line ' m ', and the horizontal line on the bottom (which is not labeled) is a transversal that cuts the parallel lines.
Did you learn that interior angles on the same side of the transversal are equal ?
I'm sure you did, although it may have a new name nowadays.
Anyway, with the help of that 'tool', angle-'B' and angle-'D' are equal. So . . .
(angle-A + angle-B) = 120
angle-B = 65
angle-A = 120 - 65 = <u>55 degrees</u>.
L’ (4.5,0) J’(-4.5, -4.5) K’(-4.5,4.5) i think
Answer:
Step-by-step explanation:
5 dimes and 8 quarters :)