Answer:
5.158 × 10²³ atoms K
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
Explanation:
<u>Step 1: Define</u>
33.49 g K
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of K - 39.10 g/mol
<u>Step 3: Convert</u>
<u />
= 5.15797 × 10²³ atoms K
<u>Step 4: Check</u>
<em>We are given 4 sig figs. Follow sig figs and round.</em>
5.15797 × 10²³ atoms K ≈ 5.158 × 10²³ atoms K
Construction of dam : scarcity of water for animals
Huh what type of question is that?!
Different fabrics rub together, and electrons may rub off
The
equation for the photosynthesis reaction in which carbon dioxide and water
react to form glucose is .
The hear reaction is the difference between the bond dissociation energies in
the products and the bond dissociation energies of the reactants
The
reactant molecules have 12 C = O, 12 H - O bonds while the product molecules
have 5 C - C, 7 C – O, 5 H – O, and 6 O = O bonds. The average bond
dissociation energies for the bonds involved in the reaction are 191 for C = O,
112 for H – O, 83 C –C, 99 C – H, 86 C – O, 119 O = O.
Substitute
the average bond dissociation energies in the equation for and
calculate as follows
=
[12 (C=O) + 12 (H-O)] – [5(C-C) + 7(C-H) + 7 (C-O) + 5(H-O) + 6(O=O)]
=
[12x191 kcal/mol + 12x112 kcal//mol] – [5x83 kcal/mol + 7x99 kcal/mol + 7x86
kcal/mol + 5x112 kcal/mol + 6x119 kcal/mol]
=
3636 kcal/mol – 2984 kcal/mol = 652 kcal/mol x 4.184 Kj/1kcal = 2.73x10^3 kJ/mol
So,
enthalpy change for the reaction is 652 kcal/mol or 2.73x10^3 kJ/mol
<span> </span>