Explanation:
It is given that,
Velocity of the particle moving in straight line is :

We need to find the distance (x) traveled by the particle during the first t seconds. It is given by :


Using by parts integration, we get the value of x as :

Hence, this is the required solution.
Answer:
0.500 T
Explanation:
Since the change in time and the number of coils are both 1, I set the problem up to be 1.3=(1.5(x)-13(x)). I then plugged in numbers for x until I got the answer to be 1.3 V.
We are given with
distance traveled through vacuum = 1.0 m
refractive index of water = 1.33
refractive index of glass = 1.50
refractive index of diamond = 2.42
distance traveled through water is = 1.0/1.33 = 0.75 m
distance traveled through water is = 1.0/1.50 = 0.67 m
distance traveled through water is = 1.0/2.42 = 0.41 m
The answer of <span> the change in electric potential difference is</span> -1.0 × 10^7 V. It is defined as the work done per unit charge. A potential difference of 1 V means that 1 joule of work is done per coulomb of charge or 1 V = 1 J C-1.