Answer:
The potential difference between the plates is 
Explanation:
Given that,
Distance = 1.4 mm
Electric field strength 
Let the potential difference is V.
We need to calculate the potential difference between the plates
Using formula of electric field


Where, V = potential
d = distance
Put the value into the formula


Hence, The potential difference between the plates is 
Answer: Gravitational force and drag force
Explanation:
For a snowboard jumper in the air, two forces would be acting. One in the downward direction- the gravitational pull and second in the opposite direction to the motion, the drag force due to air. If the snowboard jumper jumps in the air at a certain angle with the horizontal. The forces are written as the sum of vertical and horizontal components. Hence, for the modeling the motion, gravitational force and drag force are important,
Answer:
F = 3.86 x 10⁻⁶ N
Explanation:
First, we will find the distance between the two particles:

where,
r = distance between the particles = ?
(x₁, y₁, z₁) = (2, 5, 1)
(x₂, y₂, z₂) = (3, 2, 3)
Therefore,

Now, we will calculate the magnitude of the force between the charges by using Coulomb's Law:

where,
F = magnitude of force = ?
k = Coulomb's Constant = 9 x 10⁹ Nm²/C²
q₁ = magnitude of first charge = 2 x 10⁻⁸ C
q₂ = magnitude of second charge = 3 x 10⁻⁷ C
r = distance between the charges = 3.741 m
Therefore,

<u>F = 3.86 x 10⁻⁶ N</u>
Answer:
F = 3600 [N]
Explanation:
To solve this problem we must use Newton's second law, which tells us that the sum of force must be equal to the product of mass by acceleration.
ΣF = m*a
where:
F = force [N]
m = mass = 2000 [kg]
a = acceleration = 1.8 [m/s^2]
Now replacing:
F = 2000*1.8
F = 3600 [N]