The relevant equation to use here is:
y = v0 t + 0.5 g t^2
where y is the vertical distance, v0 is initial velocity =
0, t is time, g = 9.8 m/s^2
y = 0 + 0.5 * 9.8 * 3^2
<span>y = 44.1 meters</span>
Answer:
<em>13.54 tons</em>
Explanation:
Let f be the amount of fuel oxidizer needed
v be the speed
The relationship between them is inverse in nature i.e
f ∝ 1/v
f = k/v
If a rocket for use in deep space is to have the capability of boosting a total load (payload plus the rocket frame and engine) of 3.25 metric tons to a speed of 10,000 m/s, then f = 3.25 when v = 10,000
Substitute and get k
k = fv
k = 3.25 * 10,000
k = 32500
To get the amount of fuel oxidizer required to produce a speed of 2400m/s, we will find f when v = 2400m/s
Recall that f = k/v
f = 32500/2400
f = 13.54 metric tons
<em>Hence the fuel plus oxidizer that will be required is 13.54 tons</em>
I would say C but I’m not complete sore
Answer:

Explanation:
We know that heat relates to mass, specific heat and variation of temperature experimented because of this heat through the equation
. The heat released by the unknown material is absorbed by water, so we have
, and we can write:

Since thermal equilibrium is reached we know that
, where we have added
to convert the temperature from Celsius to Kelvin, as <em>we must do</em>. Since we want the specific heat of the unknown material, we do:

Which for our values is:

Intensity, E follows inverse square law.
E α 1/r²
r is the distance.
So if the distance r is increased by 3, the intensity would be reduced by 3²
3² = 9
So the answer is nines times as low. C.