Remember
(x^m)(x^n)=x^(m+n)
and
if a^m=a^n, where a=a then n=m
(x^4)(x^n)=x^5
(x^4)(x^n)=x^(4+n)
x^(4+n)=x^5
therefor
4+n=5
minus 4
n=1
Here you go. Hope you get this.
Answer:
(f+g) (x) =0 for x=-2
Step-by-step explanation:
f(x) = x^2 – 2x, g(x) = 6x + 4,
(f+g) (x) =f(x) +g(x) =
(x^2 – 2x) + (6x + 4) =
x^2 – 2x+ 6x + 4=
x^2 +4x+4
(f+g)(x) =x^2 +4x+4=0 (quvadratic equation)
x^2 +4x+4=x^2 +2x*2+2^2=(x+2)^2
then
(x+2)^2 =0
x+2=0
x=-2
(f+g) (x) =0 for x=-2
Answer:
-1.83 Not a integer because integers donot have decimal places
Step-by-step explanation:
(-10+-10+6+5+-1+-1)/6=-1.83