Answer:
196
Step-by-step explanation:
The discriminant (Δ) is given by:

Where the polynomial is in the form:

In this problem, a = 1, b = 0, and c = -49. Thus, plugging it into the formula:

Thus, the discriminant of x² – 49 = 0 is 196.
Step-by-step explanation:
(1 + cos θ + sin θ) / (1 + cos θ − sin θ)
Multiply by the reciprocal:
(1 + cos θ + sin θ) / (1 + cos θ − sin θ) × (1 + cos θ + sin θ) / (1 + cos θ + sin θ)
(1 + cos θ + sin θ)² / [ (1 + cos θ − sin θ) (1 + cos θ + sin θ) ]
(1 + cos θ + sin θ)² / [ (1 + cos θ)² − sin² θ) ]
Distribute and simplify:
(1 + cos θ + sin θ)² / (1 + 2 cos θ + cos² θ − sin² θ)
[ 1 + 2 (cos θ + sin θ) + (cos θ + sin θ)² ] / (1 + 2 cos θ + cos² θ − sin² θ)
(1 + 2 cos θ + 2 sin θ + cos² θ + 2 sin θ cos θ + sin² θ) / (1 + 2 cos θ + cos² θ − sin² θ)
Use Pythagorean identity:
(2 + 2 cos θ + 2 sin θ + 2 sin θ cos θ) / (sin² θ + cos² θ + 2 cos θ + cos² θ − sin² θ)
(2 + 2 cos θ + 2 sin θ + 2 sin θ cos θ) / (2 cos² θ + 2 cos θ)
(1 + cos θ + sin θ + sin θ cos θ) / (cos² θ + cos θ)
Factor:
(1 + cos θ + sin θ (1 + cos θ)) / (cos θ (1 + cos θ))
(1 + cos θ)(1 + sin θ) / (cos θ (1 + cos θ))
(1 + sin θ) / cos θ
Answer:
14
Step-by-step explanation:
k
=
c
−
b
2
4
a
We know that
a
=
1
,
b
=
−
8
and
c
=
2
, so let's substitute:
k
=
2
−
(
−
8
)
2
4
(
1
)
=
2
−
64
4
=
2
−
16
=
−
14
.
So, we have
min
=
−
14
. Let's check:
graph{(x^2 - 8x + 2 - y)(-14 -y)=0 [-11.82, 20.22, -15.38, 0.64]}
Answer:
1/12
Step-by-step explanation:
first we have to find all the possibilities of getting a sum of 3 or less: 1+1 or 1+2 and we count the second combination 2 times because the numbers can be on either of the dices so we have a total of 3 possibilities. all the possible pairimg of dice are 6*6=36 because each dice has 6 sides and we can get either of them. so the probability would be the chance of getting a sum of 3 or less divided by all the diff combination which equals 3/36 or 1/12 which is roughly around 8.3%