Answer:
3.33 M
Explanation:
It seems your question is incomplete, however, that same fragment has been found somewhere else in the web:
" <em>A chemist prepares a solution of silver nitrate (AgNO3) by measuring out 85.g of silver nitrate into a 150.mL volumetric flask and filling the flask to the mark with water.</em>
<em>Calculate the concentration in mol/L of the chemist's silver nitrate solution. Be sure your answer has the correct number of significant digits.</em> "
In this case, first we <u>calculate the moles of AgNO₃</u>, using its molecular weight:
- 85.0 g AgNO₃ ÷ 169.87 g/mol = 0.500 mol AgNO₃
Then we<u> convert the 150 mL of the volumetric flask into L</u>:
Finally we <u>divide the moles by the volume</u>:
- 0.500 mol AgNO₃ / 0.150 L = 3.33 M
Answer:
A= Metallic
B= Conducts electricity as a solid
C= Covalent
D=Does not conduct electricity
Explanation:
Here is an image of the periodic table. Hope this helps.
The answer is 1023 particles
F the solubility of a gas in water is 5.0g/L when the pressure of the gas above the water is 2.0 atm, what is the pressure of the gas above the water <span>when the solubility of the gas is 1.0 g/L</span>
Here's how to solve this one.
The formula for solubility is
<span>P1 / P2 = solubility1 / solubility2 </span>
P1=2*1/5= .4 atm
So the correct answer is 0.4 atm.