Answer:
2.75 mol
Explanation:
Given data:
Mass of Nitrogen = 38.5 g
Moles of ammonia produced = ?
Solution:
Chemical equation:
N₂ + 3H₂ → 2NH₃
Number of moles of nitrogen:
Number of moles = mass/ molar mass
Number of moles = 38.5 g/ 28 g/mol
Number of moles = 1.375 mol
Now we will compare the moles of ammonia and nitrogen from balance chemical equation.
N₂ : NH₃
1 : 2
1.375 : 2×1.375 = 2.75 mol
Thus 2.75 moles of ammonia are produced from 38.5 g of nitrogen.
Answer:
E° = 1.24 V
Explanation:
Let's consider the following galvanic cell: Fe(s) | Fe²⁺(aq) || Ag⁺(aq) | Ag(s)
According to this notation, Fe is in the anode (where oxidation occurs) and Ag is in the cathode (where reduction occurs). The corresponding half-reactions are:
Anode: Fe(s) ⇒ Fe²⁺(aq) + 2 e⁻
Cathode: Ag⁺(aq) + 1 e⁻ ⇒ Ag(s)
The standard cell potential (E°) is the difference between the standard reduction potential of the cathode and the standard reduction potential of the anode.
E° = E°red, cat - E°red, an
E° = 0.80 V - (-0.44 V) = 1.24 V
Cl2=3.17g/L
Ne=.901g/L
CO2=1.96g/l
therefore Cl2 is the densest gas under the given conditions.
It is B, From the bottom of the pyramid to the top