
The Quadratic Function has the domain as the set of all real numbers.
For the range, start from minimum value to maximum value.
But because the parabola is downward as a < 0. Thus, there are no minimum value but the maximum value instead.
Therefore the range is y <= -4
A+30 = 60
a = 30
a + 2b = 60
30+2b = 60
2b = 30
b = 15
5b - 5c = 60
5(15) - 5c = 60
5c = 15
c = 3
10c + d = 60
10(3) + d = 60
30 + d = 60
d = 30
2d + 6e = 180 - 60
2(30) + 6e = 120
6e = 60
e = 10
4f + 4e = 120
4f + 4(10) = 120
4f = 80
f = 20
<h3>
sin22° = 5/4</h3><h3>
tan22° = 3/√55</h3>
As we know that , sinA = opposite/hypotenuse & tanA = opposite/adjacent
So here we can find sin22° , because they already given the sides opposite & hypotenuse . And we can't find tann22° because they given the value of opposite but not given the value of adjacent side of the angle 22°
Now finding the adjacent side using
Pythagoras theorem :-
• Hypotenuse² = Base² + Height²
=> 40² = Base² + 15²
=> 1600 - 225 = Base²
=> Base² = 1375
=> Base = √1375
=> Base = 5√55
Now ,
- tan22° = Opposite/Adjacent = 15/5√55 = 3/√55
- sin22° = Opposite/hypotenuse = 15/40 = 5/4