Answer:The metal complex formed would have the following formula [Cr(NO₂)₆]³⁻. The complex has a net negative charge and hence it can only be isolated as a salt with a positive cation so the formed complex could be isolated as potassium salt. The formula for salt would be K₃[Cr(NO₂)₆].
Explanation:
The metal ion given to us is Cr³⁺ (Chromium) in +3 oxidation state.
The electronic configuration for the metal ion is [Ar]3d³ so there are vacant 3d metal orbitals which are available and hence 6 NO₂⁻ ligands can easily attack the metal center and form a metal complex.
The charge on the overall complex can be calculated using the oxidation states of metal and ligand which is provided.
The (chromium ) Cr³⁺ metal has +3 charge and 6 NO₂⁻ (nitro) ligands have -6 charge and since the ligands will be providing a total of 6 - (negative) charge and hence only 3- (negative ) charge can be neutralized so a net 3- negative charge would be present on the overall complex which is basically present at the metal center :
charge on the complex=+3-6=-3
Let X be the Oxidation state of Cr in complex =[Cr(NO₂)₆]³⁻
X-6=-3
X=-3+6
X=+3
so our calculated oxidation state of Cr is +3 which matches with the provided in question.
As we can see that the overall metal complex has a net negative charge and hence and only positively charged cations can form a salt with this metal complex and hence only potassium K⁺ ions can form salt with the metal complex.
since overall charge present on the metal complex is -3 so 3 K⁺ ion would be needed to neutralize it and hence the formula of the metal salt would be K₃[Cr(NO₂)₆].
Answer:
a)4.51
b) 9.96
Explanation:
Given:
NaOH = 0.112M
H2S03 = 0.112 M
V = 60 ml
H2S03 pKa1= 1.857
pKa2 = 7.172
a) to calculate pH at first equivalence point, we calculate the pH between pKa1 and pKa2 as it is in between.
Therefore, the half points will also be the middle point.
Solving, we have:
pH = (½)* pKa1 + pKa2
pH = (½) * (1.857 + 7.172)
= 4.51
Thus, pH at first equivalence point is 4.51
b) pH at second equivalence point:
We already know there is a presence of SO3-2, and it ionizes to form
SO3-2 + H2O <>HSO3- + OH-
![Kb = \frac{[ HSO3-][0H-]}{SO3-2}](https://tex.z-dn.net/?f=%20Kb%20%3D%20%5Cfrac%7B%5B%20HSO3-%5D%5B0H-%5D%7D%7BSO3-2%7D)

[HSO3-] = x = [OH-]
mmol of SO3-2 = MV
= 0.112 * 60 = 6.72
We need to find the V of NaOh,
V of NaOh = (2 * mmol)/M
= (2 * 6.72)/0.122
= 120ml
For total V in equivalence point, we have:
60ml + 120ml = 180ml
[S03-2] = 6.72/120
= 0.056 M
Substituting for values gotten in the equation ![Kb=\frac{[HSO3-][OH-]}{[SO3-2]}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BHSO3-%5D%5BOH-%5D%7D%7B%5BSO3-2%5D%7D%20)
We noe have:

![x = [OH-] = 9.11*10^-^5](https://tex.z-dn.net/?f=x%20%3D%20%5BOH-%5D%20%3D%209.11%2A10%5E-%5E5)

=4.04
pH = 14- pOH
= 14 - 4.04
= 9.96
The pH at second equivalence point is 9.96
1) State the balanced chemical equation
Na3 PO4 + 3 AgNO3 → 3NaNO3 + Ag3 PO4
sodium phosphate silver nitrate sodium nitrate silver phosphate
2) State the molar ratios
1 mol Na3PO4 : 3 mol AgNO3 : 3 mol NaNO3 : 1 mol Ag3 PO4
3) As you see 3 moles of Silver Nitrate react with 1 mol of Na3 PO4, then you will need.
The you need to use the molar ratio 1:3 to calculate the number of moles of sodium phosphate
1 mol Ag NO3 * [ 1 mol Na3 PO4 / 3 mol Ag NO3] = 0.33 mol Na3 PO4
Answer: 0.33 mol sodium phosphate
The positive effect of using chemistry is the generation of energy without fossil fuels.
Chemistry is the branch of science that deals with the study of the nature, properties and composition of matter as well as the changes that matter undergoes. Chemistry has really contributed positively to the advancement of the society.
Lately, there has been a lot of emphasis on alternative sources of energy apart from fossil fuels. One such options is the use of hydrogen fuels. Chemistry has been at the forefront of this research.
Hence, one positive effect of using chemistry is that energy can be generated without burning fossil fuels.
Learn more: brainly.com/question/2192784