Answer: 1.31
Explanation:
No.of moles = given no.of atoms/Avagadro number
= 7.91×10^23 / 6.022 x 10^23
= 1.31
therefore, no.of moles = 1.31
Hope it helped u,
pls mark as the brainliest
^_^
Hi!
Electrons are particles which basically 'orbit' around the nucleus. Protons and neutrons are condensed, in a fixed position inside the nucleus.
With this in mind, the answer will be C.
Hopefully, this helps! =)
Answer:
Model D
Explanation:
Bohr's Model has a planetary look. Where the electrons are in an orbit.
<span>Answer:
A 0.04403 g sample of gas occupies 10.0-mL at 289.0 K and 1.10 atm. Upon further analysis, the compound is found to be 25.305% C and 74.695% Cl. What is the molecular formula of the compound?
--------------------------------------...
Seems like I did a problem very similar to this--this must be the "B" test. But the halogen was different.
25.305% C/12 = 2.108
74.695% Cl/35.5 = 2.104
So the empirical formula would be CH. However, there are many compounds which fit this bill, so we have to use the gas data. (And I made, in the previous problem, the simplifying assumption that 289C and 1.10 atm would offset each other, so I'll do that, too.)
0.044 grams/10 ml = x/22.4 liters
0.044g/0.010 liters = x/22.4 liters
22.4 liters/0.010 liters = 2240 (ratio)
2240 x .044 = 98.56 (actual atomic weight)
CCl = 35.5+12 or 47.5, so two of those is 95 grams/mole.
This is sufficiient to distinguish C2CL2, (dichloroacetylene)
from C6CL6 (hexachlorobenzene) which would
mass 3 times as much.</span>