1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
viva [34]
3 years ago
11

Explain what happens to particles during a phase

Physics
1 answer:
ad-work [718]3 years ago
4 0

Answer:

Particles behave very differently in the three stages of matter.

Solid

In the solid state particles are held closely together and vibrate slightly. They exist in a regular arrangement - there is no regular arrangement in the other states.

Liquid

In the liquid state particles can move - the movement (temperature dependent) tends to be less frantic than in the gaseous state. The particles are still relatively close together.

Gas

In the gaseous state, particles move freely at a frantic pace.

The best demonstration of this is

H

2

O

(water)

In the solid state (ice) we can quite clearly observe no movement under conditions that favour the state being maintained (i.e. in a freezer)

In the liquid state (water) we can see the movement of the particles by merely shaking a glass with water.

In the gaseous state (steam) we can see the frantic motion of the particles by observing the steam that rises from a kettle when the water reaches boiling point.

Explanation:

You might be interested in
An observation of the red shift of galaxies suggests that the universe is ______ a.. expanding.. b.. contracting.. c.. reversing
harina [27]
<span>An observation of the red shift of galaxies suggests that the universe is expanding. The correct option among all the options that are given in the question is the first option or option "a". I hope that this is the answer that you were looking for and it has actually come to your help.</span>
8 0
4 years ago
Read 2 more answers
Two wires each carry 10.0 A of current (in opposite directions) and are 2.50 mm apart. What is the magnetic field 37.0 cm away a
lyudmila [28]

Answer:

see answer below

Explanation:

Before we do any kind of calculation, we need to convert the proper units of the exercise. All the units of distance must be in meters, so, let's change distance of the wire, and the magnetic field to meters:

Separation between the wires are 2.5 mm:

2.5 mm * (1 m / 1000 mm) = 0.0025 m

The distance of P from the bottom of the wires is 37 cm:

37 cm * (1 m/100 cm) = 0.37 m

The distance of P from the top of the wires is just the sum of the two distances:

R = 0.37 + 0.0025 = 0.3725 m

Now that we have the distance, we can determine the magnetic field, using the following expression:

B = B(bottom) - B(top)   or just B₂ - B₁

And B = μ₀ I / 2πR

Replacing in the above expression we have:

B = μ₀ I / 2π ( 1/R₂ - 1/R₁)

Now we can determine the magnetic field:

B = (4πx10⁻⁷ * 10 / 2π) (1/0.37 - 1/0.3725)

<h2>B = 3.63x10⁻⁸ T</h2><h2></h2>

Which means that the magnetic field is out of the page.

Hope this helps

4 0
3 years ago
A copper wire and a tungsten wire of the same length have the same resistance. What is the ratio of the diameter of the copper w
spayn [35]

Answer:

Therefore the ratio of diameter of the copper to that of the tungsten is

\sqrt{3} :\sqrt{10}

Explanation:

Resistance: Resistance is defined to the ratio of voltage to the electricity.

The resistance of a wire is

  1. directly proportional to its length i.eR\propto l
  2. inversely proportional to its cross section area i.eR\propto \frac{1}{A}

Therefore

R=\rho\frac{l}{A}

ρ is the resistivity.

The unit of resistance is ohm (Ω).

The resistivity of copper(ρ₁) is 1.68×10⁻⁸ ohm-m

The resistivity of tungsten(ρ₂) is 5.6×10⁻⁸ ohm-m

For copper:

A=\pi r_1^2 =\pi (\frac{d_1}{2} )^2

R_1=\rho_1\frac{l_1}{\pi(\frac{d_1}{2})^2 }

\Rightarrow (\frac{d_1}{2})^2=\rho_1\frac{l_1}{\pi R_1 }......(1)

Again for tungsten:

R_2=\rho_2\frac{l_2}{\pi(\frac{d_2}{2})^2 }

\Rightarrow (\frac{d_2}{2})^2=\rho_2\frac{l_2}{\pi R_2 }........(2)

Given that R_1=R_2   and    l_1=l_2

Dividing the equation (1) and (2)

\Rightarrow\frac{ (\frac{d_1}{2})^2}{ (\frac{d_2}{2})^2}=\frac{\rho_1\frac{l_1}{\pi R_1 }}{\rho_2\frac{l_2}{\pi R_2 }}

\Rightarrow( \frac{d_1}{d_2} )^2=\frac{1.68\times 10^{-8}}{5.6\times 10^{-8}}   [since R_1=R_2   and    l_1=l_2]

\Rightarrow( \frac{d_1}{d_2} )=\sqrt{\frac{1.68\times 10^{-8}}{5.6\times 10^{-8}}}

\Rightarrow( \frac{d_1}{d_2} )=\sqrt{\frac{3}{10}}

\Rightarrow d_1:d_2=\sqrt{3} :\sqrt{10}

Therefore the ratio of diameter of the copper to that of the tungsten is

\sqrt{3} :\sqrt{10}

8 0
4 years ago
What would happen if a solid temperature increases
Ber [7]
It will increase in size
7 0
3 years ago
Saturated steam at 125 kpa is compressed adiabatically in a centrifugal compressor to 700 kpa at the rate of 2.5 kg⋅s−1. the com
Tpy6a [65]
M° = 2.5 kg/sec
For saturated steam tables
at p₁ = 125Kpa
hg = h₁ = 2685.2 KJ/kg
SQ = s₁ = 7.2847 KJ/kg-k
for isotopic compression
S₁ = S₂ = 7.2847 KJ/kg-k
at 700Kpa steam with S = 7.2847
h₂ 3051.3 KJ/kg
Compressor efficiency
h =  0.78
0.78 = h₂ - h₁/h₂-h₁
0.78 = h₂-h₁ → 0.78 = 3051.3 - 2685.2/h₂ - 2685.2
h₂ = 3154.6KJ/kg
at 700Kpa with 3154.6 KJ/kg
enthalpy gives
entropy S₂ = 7.4586 KJ/kg-k
Work = m(h₂ - h₁) = 2.5(3154.6 - 2685.2
W = 1173.5KW
5 0
4 years ago
Other questions:
  • What are the two main classifications of matter??
    9·1 answer
  • You push the ball with aforce of 22.8N which induces a -2.3N frictional force. What is the net force while you push?
    7·1 answer
  • What would be the volume of a liquid that has a density of 1.2 g/mL and a mass of 24 grams
    15·1 answer
  • The electromagnetic waves with the most energy have the greatest
    8·2 answers
  • Which statement describes the magnetic field within a bar magnet?
    13·1 answer
  • What is the difference between a bound orbit and an unbound orbit around the sun?
    10·1 answer
  • An unruly student with a spitwad (a lump of wet paper) of mass 20 g in his pocket finds himself in the school library where ther
    9·1 answer
  • 4. A lamp is connected to a 230 V mains supply. A current of 4 A flows through the
    14·2 answers
  • What are the issues that hinders efforts to achieve sustainability?
    5·1 answer
  • A truck brakes from 15 m/s to 2 m/s in 15 seconds. What is its acceleration?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!