The answer is 5663588 for your question
5.46/0.25= 21.84 hope it helps
Answer:
sin²x = (1 - cos2x)/2 ⇒ proved down
Step-by-step explanation:
∵ sin²x = (sinx)(sinx) ⇒ add and subtract (cosx)(cosx)
(sinx)(sinx) + (cosx)(cosx) - (cosx)(cosx)
∵ (cosx)(cosx) - (sinx)(sinx) = cos(x + x) = cos2x
∴ - cos2x + cos²x = -cos2x + (1 - sin²x)
∴ 1 - cos2x - sin²x = (1 - cos2x)/2 ⇒ equality of the two sides
∴ (1 - cos2x) - 1/2(1 - cos2x) = sin²x
∴ 1/2(1 - cos2x) = sin²x
∴ sin²x = (1 - cos2x)/2
I need more info please!!
Answer with explanation:
The given differential equation is
y" -y'+y=2 sin 3x------(1)
Let, y'=z
y"=z'

Substituting the value of , y, y' and y" in equation (1)
z'-z+zx=2 sin 3 x
z'+z(x-1)=2 sin 3 x-----------(1)
This is a type of linear differential equation.
Integrating factor

Multiplying both sides of equation (1) by integrating factor and integrating we get

