Answer:11 km/s
Explanation:
Given
Escape velocity at the surface of earth is 11 km/s
Escape velocity is given by

Escape velocity at the surface of earth
--------------------1
If Escape velocity is three times and the radius is also the three times


i.e. 
Answer:
hellooooo :) ur ans is 33.5 m/s
At time t, the displacement is h/2:
Δy = v₀ t + ½ at²
h/2 = 0 + ½ gt²
h = gt²
At time t+1, the displacement is h.
Δy = v₀ t + ½ at²
h = 0 + ½ g (t + 1)²
h = ½ g (t + 1)²
Set equal and solve for t:
gt² = ½ g (t + 1)²
2t² = (t + 1)²
2t² = t² + 2t + 1
t² − 2t = 1
t² − 2t + 1 = 2
(t − 1)² = 2
t − 1 = ±√2
t = 1 ± √2
Since t > 0, t = 1 + √2. So t+1 = 2 + √2.
At that time, the speed is:
v = at + v₀
v = g (2 + √2) + 0
v = g (2 + √2)
If g = 9.8 m/s², v = 33.5 m/s.
Answer:
5 Days to Seconds = 432000
Explanation:
Answer:
Explanation:
Work done on the lever ( input energy ) = force applied x input distance
= 24 N x 2m = 48 J
Work done by the lever ( output energy ) = load x output distance
= 72 N x 0.5m = 36 J
efficiency = output energy / input energy
= 36 J / 48 J
= 3 / 4 = .75
In percentage terms efficiency = 75 % .
In the given problem, we say various information's that are going to help us reach the ultimate answer to the question. Let us first write the information's that have been presented in front of us.
Mass of the car = 2000 kg
Velocity of the car = 25 m/s^2
Radius of the circle = 80 m
Now we already know the equation for calculating the centripetal force and that is
Centripetal Force = [mass * (velocity)^2]/Radius
= [2000 * (25)^2]/80
= (2000 * 625)/80
= 1250000/80
= 15625
So the centripetal force on the car is 15625 Newtons