Answer:
The initial velocity of the ball is 28.714 m/s
Explanation:
Given;
time of flight of the ball, t = 2.93 s
acceleration due to gravity, g = 9.8 m/s²
initial velocity of the ball, u = ?
The initial velocity of the ball is given by;
v = u + (-g)t
where;
v is the final speed of the ball at the given time, = 0
g is negative because of upward motion
0 = u -gt
u = gt
u = (9.8 x 2.93)
u = 28.714 m/s
Therefore, the initial velocity of the ball is 28.714 m/s
Answer:
Use the ammeter to measure the current that flows through each wire, because a larger current that flows through the wire corresponds to a smaller resistivity
Explanation:
Since they are connected to a constant voltage power source, the potential difference does not change. The potential difference is proportional to the product of the current and the resistance and, the resistance opposes the flow of electric current. It is clear to see that a large current that flows through the current means there is a lesser resistance to the flow of current at constant potential difference across the circuit.
Answer:
Safety
Explanation:
Expressways are banked to resist centifugal action
If the moon was hit by an asteroid there would be a crater mark and possible movement.