Answer:
Vy = V0 sin 38 where Vy is the initial vertical velocity
The ball will accelerate downwards (until it lands)
Note the signs involved if Vy is positive then g must be negative
The acceleration is constant until the ball lands
t (upwards) = (0 - Vy) / -g = Vy / g final velocity = 0
t(downwards = (-Vy - 0) / -g = Vy / g final velocity = -Vy
time upwards = time downwards (conservation laws)
Answer:17.08 s
Explanation:
Given
distance between First and second Runner is 45.6 m
speed of first runner
=3.1 m/s
speed of second runner
=4.65 m/s
Distance between first runner and finish line is 250 m
Second runner need to run a distance of 250+45.6=295.6 m
Time required by second runner 
time required by first runner to reach finish line
Thus second runner reach the finish line 80.64-63.56=17.08 s earlier
Answer:
the angular velocity of the car is 12.568 rad/s.
Explanation:
Given;
radius of the circular track, r = 0.3 m
number of revolutions per second made by the car, ω = 2 rev/s
The angular velocity of the car in radian per second is calculated as;
From the given data, we convert the angular velocity in revolution per second to radian per second.

Therefore, the angular velocity of the car is 12.568 rad/s.
Answer:
The angle between the electric field lines and the equipotential surface is 90 degree.
Explanation:
The equipotential surfaces are the surface on which the electric potential is same. The work done in moving a charge from one point to another on an equipotential surface is always zero.
The electric field lines are always perpendicular to the equipotential surface.
As

For equipotential surface, dV = 0 so

The dot product of two non zero vectors is zero, if they are perpendicular to each other.