Answer:
1/12
Step-by-step explanation:
The probability of landing heads is 1/2, the probability of rolling a 3 is 1/6. Multiply them to get the answer.
Hope this helped!
So hmm notice the picture below
you have the center, and a point on the circle... all you need is the radius

then use that radius in the circle's equation
Using the <u>normal distribution and the central limit theorem</u>, it is found that there is a 0.0166 = 1.66% probability of a sample proportion of 0.59 or less.
In a normal distribution with mean
and standard deviation
, the z-score of a measure X is given by:
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
- By the Central Limit Theorem, the sampling distribution of sampling proportions of a proportion p in a sample of size n has mean
and standard error 
In this problem:
- 1,190 adults were asked, hence

- In fact 62% of all adults favor balancing the budget over cutting taxes, hence
.
The mean and the standard error are given by:


The probability of a sample proportion of 0.59 or less is the <u>p-value of Z when X = 0.59</u>, hence:

By the Central Limit Theorem



has a p-value of 0.0166.
0.0166 = 1.66% probability of a sample proportion of 0.59 or less.
You can learn more about the <u>normal distribution and the central limit theorem</u> at brainly.com/question/24663213

- Given - <u>A </u><u>trapezium</u><u> </u><u>ABCD </u><u>with </u><u>non </u><u>parallel </u><u>sides </u><u>of </u><u>measure </u><u>1</u><u>5</u><u> </u><u>cm </u><u>each </u><u>!</u><u> </u><u>along </u><u>,</u><u> </u><u>the </u><u>parallel </u><u>sides </u><u>are </u><u>of </u><u>measure </u><u>1</u><u>3</u><u> </u><u>cm </u><u>and </u><u>2</u><u>5</u><u> </u><u>cm</u>
- To find - <u>Area </u><u>of </u><u>trapezium</u>
Refer the figure attached ~
In the given figure ,
AB = 25 cm
BC = AD = 15 cm
CD = 13 cm
<u>Construction</u><u> </u><u>-</u>

Now , we can clearly see that AECD is a parallelogram !
AE = CD = 13 cm
Now ,

Now , In ∆ BCE ,

Now , by Heron's formula

Also ,

<u>Since </u><u>we've </u><u>obtained </u><u>the </u><u>height </u><u>now </u><u>,</u><u> </u><u>we </u><u>can </u><u>easily </u><u>find </u><u>out </u><u>the </u><u>area </u><u>of </u><u>trapezium </u><u>!</u>

hope helpful :D