<span> value
Weighted mean average = ---------------------------
number of brands
value = mean price of computers from Store
#1 * number of brands from store #1 + mean price of computers from store #2 * number of brands from store #2
value = $799.99 * 2 + $679.99 * 4 = $4,319.94
number of brands = 2 + 4 = 6
weighted average = $4,319.94 / 6 = $ 719.99
Answer: option b. $719.99
</span>
Answer:
The correct option is B.
Step-by-step explanation:
Given information: AB\parallel DCAB∥DC and BC\parallel ADBC∥AD .
Draw a diagonal AC.
In triangle BCA and DAC,
AC\cong ACAC≅AC (Reflexive Property of Equality)
\angle BAC\cong \angle DCA∠BAC≅∠DCA ( Alternate Interior Angles Theorem)
\angle BCA\cong \angle DAC∠BCA≅∠DAC ( Alternate Interior Angles Theorem)
The ASA (Angle-Side-Angle) postulate states that two triangles are congruent if two corresponding angles and the included side of are congruent.
By ASA postulate,
\triangle BCA\cong \triangle DAC△BCA≅△DAC
Therefore option B is correct
Answer:
No graph attached
Step-by-step explanation:
Vertical reflection over the x-axis, shrink of 1/3, right 3, up 2
Answer:
William will make 12 bags of food and each of the bag will contains 2 cans of fruit and 5 cans of vegetables.
Step-by-step explanation:
Given:
Number of fruits cans = 24
Number of veggies cans = 60
William will have to distribute them in equal bags with equal cans of fruits and vegetables respectively.
For this:
We have to find the GCF (greatest common factor) of 24 and 60.
GCF by listing out the factors method.
Factors of 24 :
Factors of 60 : 
So,
The greatest common factor of
and
is
.
The number of bags William will used for equal distribution = 
Now,
We have to distribute the veggies and fruits in equal number of cans to these
bags.
Number of fruits cans used in each bag =
Number of vegetables can used in each bag = 
We can say that:
William will make 12 bags of food and each of the bag will contains 2 cans of fruit and 5 cans of vegetables.