The expression that represents the value of z is ![\sqrt[3]{3 + i\sqrt 3 }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B3%20%2B%20i%5Csqrt%203%20%7D)
<h3>What are complex numbers?</h3>
Complex numbers are numbers that have real and imaginary parts
A complex number (n) is represented as:
![n = a + bi](https://tex.z-dn.net/?f=n%20%3D%20a%20%2B%20bi)
From the above expression, we have:
- a represents the real part
- bi represents the imaginary part
Given that:
![z^3 = 3 + \sqrt 3 i](https://tex.z-dn.net/?f=z%5E3%20%3D%203%20%2B%20%5Csqrt%203%20i)
Rewrite the above expression as:
![z^3 = 3 + i\sqrt 3](https://tex.z-dn.net/?f=z%5E3%20%3D%203%20%2B%20i%5Csqrt%203)
Take the cube roots of both sides
![z = \sqrt[3]{3 + i\sqrt 3 }](https://tex.z-dn.net/?f=z%20%3D%20%5Csqrt%5B3%5D%7B3%20%2B%20i%5Csqrt%203%20%7D)
The letters are not given.
Hence, the expression that represents the value of z is ![\sqrt[3]{3 + i\sqrt 3 }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B3%20%2B%20i%5Csqrt%203%20%7D)
Read more about complex numbers at:
brainly.com/question/11089283