Answer:
2726.85 °C
Explanation:
Given data:
Initial pressure = 565 torr
Initial temperature = 27°C
Final temperature = ?
Final pressure = 5650 torr
Solution:
Initial temperature = 27°C (27+273 = 300 K)
According to Gay-Lussac Law,
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
T₂ = P₂T₁ /P₁
T₂ = 5650 torr × 300 K / 565 torr
T₂ = 1695000 torr. K /565 torr
T₂
= 3000 K
Kelvin to degree Celsius:
3000 K - 273.15 = 2726.85 °C
In an ionic bond :
=》B. one atom accepts electrons from another.
in this bond an atom ( <em><u>metallic</u></em> ) loses its electrons and another atom ( <em><u>non- metallic</u></em> ) accepts the electrons, and since there isn't the equal positive and negative charges in the atoms, they forms <em><u>cations</u></em> ( +ve charge ) and <em><u>anions </u></em>( -ve charge )
and get stacked or <em><u>attracted</u></em> to each other by strong <em><u>electrostatic force</u></em>.
im not sure which one to answer, and i can hardly see the text.
Answer:
X= Be
Y= B
Z=O
Explanation:
From the description of the compound XCl2, among the options listed only beryllium can form such compound with three lone pairs in the two chlorine atoms and no lone pair on the central atom X.
From the description of YCl3, only Boron among the options listed can form such a compound with no lone pair on the central atom and three lone pairs on each of the chlorine atoms.
From the description of ZCl2, only oxygen forms the compound OCl2 among the elements listed where oxygen possesses two lone pairs and each chlorine atom possesses three lone pairs each.
Answer:
2p
Explanation:
it has 3 dumbell shapes, hence p
you can't determine the principal quantum number by looking at the shape, however bigger or spread orbital means higher value of n