Answer:
ork out which of the displacement (S), initial velocity (U), acceleration (A) and time (T) you have to solve for final velocity (V).
If you have U, A and T, use V = U + AT.
If you have S, U and T, use V = 2(S/T) - U.
If you have S, U and A, use V = SQRT(U2 + 2AS)
Answer:
Contributes to the membrane potential.
Explanation:
Sodium-potassium pump: In cellular physiology, a protein which is identified in many cells that helping in to maintain the higher concentration of potassium ions inside than that is in the surrounding medium and maintain the lower concentration of sodium ions inside than that of the surrounding medium.
This unbalanced charge transfer contributes in the separation of charge across the cell membrane. Sodium-potassium pump is known for important contributor to action potential which is produce by nerve cells.
Answer:
being polar, it can easily dissolve other polar substances or substances with ionic bonds like nacl
Answer:
The answer is Ionization energy.
Explanation:
Ionization Energy. The ionization energy tends to increase as one moves from left to right across a given period or up a group in the periodic table.
Answer:
The particles in a solid are tightly packed and locked in place. Although we cannot see it or feel it, the particles are moving or vibrating in place.