Answer:
the first one is protons and electrons the second one is protons the third one is neutrons and the forth one is also neutron
Zinc would be considered the strongest reducing agent.
<h3>Reducing agent</h3>
A reducing agent is a chemical species that "donates" one electron to another chemical species in chemistry (called the oxidizing agent, oxidant, oxidizer, or electron acceptor). Earth metals, formic acid, oxalic acid, and sulfite compounds are a few examples of common reducing agents.
Reducers have excess electrons (i.e., they are already reduced) in their pre-reaction states, whereas oxidizers do not. Usually, a reducing agent is in one of the lowest oxidation states it can be in. The oxidation state of the oxidizer drops while the oxidizer's oxidation state, which measures the amount of electron loss, increases. The agent in a redox process whose oxidation state rises, which "loses/donates electrons," which "oxidizes," and which "reduces" is known as the reducer or reducing agent.
Learn more about reducing agent here:
brainly.com/question/2890416
#SPJ4
<h3 />
Answer:
the anwser isn't in the choices
Explanation:
H=MC(change of temp.)
M=mass of water=250g
C=specific heat of water = 4.186 j/g
change in temperature is 121-40= 81
H= 250x4.186x81=84766.5J
Since the sign is positive, the entropy increased by 88.48 J/K.
Examine the phases of the species present to determine whether a physical or chemical process will cause an increase or decrease in entropy. Keep in mind "Silly Little Goats" to aid you in telling.
[1 Sf K+1 + 1 Sf Br-1 (aq)] ([1Sf(KBr (s))])
[1(102.5) + 1(82.42)] - [1(96.44)] = 88.48 J/K
If the entropy has grown, we say that Delta S is positive, and if it has dropped, we say that Delta S is negative. Due to its ionic nature, KBr is soluble in water and causes the 'K(+)' ions to hydrate.
Learn more about Entropy here-
brainly.com/question/13146879
#SPJ4