Answer:
The answer you have selected in the screenshot is correct.
Its tendency to react with oxygen is correct.
Hope this helps.
This is because amino group of p-aminobenzoic acid is an aniline and is less electrophilic than an alkyl amine.
<h3>What is an Aniline?</h3>
This is an aromatic amine which consists of a phenyl group attached to an amino group.
The amino group of p-aminobenzoic acid being an aniline makes it less electrophilic which is why an alkyl amine participates in the reaction instead.
Read more about Aniline here brainly.com/question/9982058
Molar mass of :
O2 = 16 * 2 = 32 g/mol
CO2 = 12 + 16 * 2 = 44 g/mol
<span>Balanced chemical equation :
</span>
1 CH4 +
2 O2 =
1 CO2 +
2 H2O
↓ ↓
2 moles 1 mole
2* 32 g O2 ----------> 1* 44 g CO2
x g O2 ------------> 10.0 g CO2
44 x = 2 * 32*10.0
44 x = 640


of O2
<h3>Answer:</h3>
Strontium (Sr)
<h3>Explanation:</h3>
The condition given in statement is the presence of two valence electron. Hence, first we found the electronic configuration of given atoms as follow;
Rubidium [Kr] 5s¹
Strontium [Kr] 5s²
Zirconium [Kr] 4d² 5s²
Silver [Kr] 4d¹⁰ 5s¹
From above configurations it is cleared that only Strontium and Zirconium has two electrons in its valence shell.
We also know that s-block elements are more reactive than transition elements due to less shielding effect in transition elements hence, making it difficult for transition metals to loose electrons as compared to s-block elements. Therefore, we can conclude that Strontium present in s-block with two valence electrons is the correct answer.
You must burn 1.17 g C to obtain 2.21 L CO₂ at STP.
The balanced chemical equation is
C + O₂ → CO₂.
<em>Step 1</em>. Convert <em>litres of CO₂ to moles of CO₂</em>.
STP is <em>0 °C and 1 bar</em>. At STP the volume of 1 mol of an ideal gas is 22.71 L.
Moles of CO₂ = 2.21 L CO₂ × (1 mol CO₂/22.71 L CO₂) = 0.097 31 mol CO₂
<em>Step 2</em>. Use the molar ratio of C:CO₂ to <em>convert moles of CO₂ to moles of C
</em>
Moles of C = 0.097 31mol CO₂ × (1 mol C/1 mol CO₂) = 0.097 31mol C
<em>Step 3</em>. Use the molar mass of C to <em>calculate the mass of C
</em>
Mass of C = 0.097 31mol C × (12.01 g C/1 mol C) = 1.17 g C
It looks as if you are using the <em>old (pre-1982) definition</em> of STP. That definition gives a value of 1.18 g C.