The minimum of a quadratic function, with a positive coefficient a, is its vertex.
Let's find the x₀ coordinate.
![f(x) = 5x^2 -70x + 258\\\\x_0=\dfrac{-b}{2a}=\frac{-(-70)}{2*5} =\frac{70}{10} =7](https://tex.z-dn.net/?f=f%28x%29%20%3D%205x%5E2%20-70x%20%2B%20258%5C%5C%5C%5Cx_0%3D%5Cdfrac%7B-b%7D%7B2a%7D%3D%5Cfrac%7B-%28-70%29%7D%7B2%2A5%7D%20%20%3D%5Cfrac%7B70%7D%7B10%7D%20%3D7)
Now we need to find y₀ coordinate. That will be the minimum of function.
![y_0=5\times7^2-70\times7+258=13](https://tex.z-dn.net/?f=%20y_0%3D5%5Ctimes7%5E2-70%5Ctimes7%2B258%3D13)
So, the minimum cost to produce the product is $13
Decompose 5x^2 − 70x + 258 into multipliers
![5x^2 - 70x + 258=(5x^2-70x+245)+13=5(x^2-14+49)+13=\\=5(x-7)^2+13](https://tex.z-dn.net/?f=5x%5E2%20-%2070x%20%2B%20258%3D%285x%5E2-70x%2B245%29%2B13%3D5%28x%5E2-14%2B49%29%2B13%3D%5C%5C%3D5%28x-7%29%5E2%2B13)
Answer: 5(x − 7)^2 + 13; The minimum cost to produce the product is $13.