1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frosja888 [35]
2 years ago
10

Find the slope of the line going through the points (-5, -10)

Mathematics
1 answer:
andreyandreev [35.5K]2 years ago
4 0

Answer:

I know the answer

Step-by-step explanation:

cancerous blah blah blah blah blah blah blah blah blah blah blah blah blah blah sometime x 4.2 560/60 blah blah blah blah blah blah baba baba baba blah blah blah blah 12 1642 blah blah blah blah blah blah blah blah lol oh Lala go to Bells oh Wells

You might be interested in
In triangle NOP, Np is extended through Point P to Point Q, m < NOP =(x+17) degrees, m< PNO =(2x-4) degrees, and m< OPQ
Zigmanuir [339]
To find the measure of angle OPQ, we have two equations...
y+5x-17=180 because angles OPN and OPQ are supplementary...
AND
x+17+2x-4+y=180 because the total degrees of a triangle must add up to 180.
The equations...
5x+y=197
3x+y=167
solce the system of equations...
x=15
y=122
Since we wanted to solve for y, 122 is the answer.
The measure of angle OPQ is 122.

Sorry this took forever. The website is hard to use because I'm used to using the app:)

Best of wishes!

6 0
3 years ago
la edad de josé y beatriz están en la relacion de 5 a4 . si dentro de 3 años la suma de ambas edades seran 60 años , ¿ cual es l
miss Akunina [59]

Answer:

La edad actual de Beatriz es de:

30 años

Step-by-step explanation:

Planteamiento:

5e = 4b

(e+3) + (b+3) = 60

e = edad actual de José

b = edad actual de Beatriz

Desarrollo:

de la segunda ecuación del planteamiento:

e + b + 6 = 60

e + b = 60 - 6

e + b = 54

e = 54 - b

sustituyendo este último valor en la primer ecuación del planteamiento:

5(54-b) = 4b

5*54 + 5*-b = 4b

270 - 5b = 4b

270 = 4b + 5b

270 = 9b

b = 270/9

b = 30

e = 54 - b

e = 54 - 30

e = 24

Comprobación:

5e = 4b

5*24 = 4*30 = 120

3 0
3 years ago
Find all the complex roots. Write the answer in exponential form.
dezoksy [38]

We have to calculate the fourth roots of this complex number:

z=9+9\sqrt[]{3}i

We start by writing this number in exponential form:

\begin{gathered} r=\sqrt[]{9^2+(9\sqrt[]{3})^2} \\ r=\sqrt[]{81+81\cdot3} \\ r=\sqrt[]{81+243} \\ r=\sqrt[]{324} \\ r=18 \end{gathered}\theta=\arctan (\frac{9\sqrt[]{3}}{9})=\arctan (\sqrt[]{3})=\frac{\pi}{3}

Then, the exponential form is:

z=18e^{\frac{\pi}{3}i}

The formula for the roots of a complex number can be written (in polar form) as:

z^{\frac{1}{n}}=r^{\frac{1}{n}}\cdot\lbrack\cos (\frac{\theta+2\pi k}{n})+i\cdot\sin (\frac{\theta+2\pi k}{n})\rbrack\text{ for }k=0,1,\ldots,n-1

Then, for a fourth root, we will have n = 4 and k = 0, 1, 2 and 3.

To simplify the calculations, we start by calculating the fourth root of r:

r^{\frac{1}{4}}=18^{\frac{1}{4}}=\sqrt[4]{18}

<em>NOTE: It can not be simplified anymore, so we will leave it like this.</em>

Then, we calculate the arguments of the trigonometric functions:

\frac{\theta+2\pi k}{n}=\frac{\frac{\pi}{2}+2\pi k}{4}=\frac{\pi}{8}+\frac{\pi}{2}k=\pi(\frac{1}{8}+\frac{k}{2})

We can now calculate for each value of k:

\begin{gathered} k=0\colon \\ z_0=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{0}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{0}{2}))) \\ z_0=\sqrt[4]{18}\cdot(\cos (\frac{\pi}{8})+i\cdot\sin (\frac{\pi}{8}) \\ z_0=\sqrt[4]{18}\cdot e^{i\frac{\pi}{8}} \end{gathered}\begin{gathered} k=1\colon \\ z_1=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{1}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{1}{2}))) \\ z_1=\sqrt[4]{18}\cdot(\cos (\frac{5\pi}{8})+i\cdot\sin (\frac{5\pi}{8})) \\ z_1=\sqrt[4]{18}e^{i\frac{5\pi}{8}} \end{gathered}\begin{gathered} k=2\colon \\ z_2=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{2}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{2}{2}))) \\ z_2=\sqrt[4]{18}\cdot(\cos (\frac{9\pi}{8})+i\cdot\sin (\frac{9\pi}{8})) \\ z_2=\sqrt[4]{18}e^{i\frac{9\pi}{8}} \end{gathered}\begin{gathered} k=3\colon \\ z_3=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{3}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{3}{2}))) \\ z_3=\sqrt[4]{18}\cdot(\cos (\frac{13\pi}{8})+i\cdot\sin (\frac{13\pi}{8})) \\ z_3=\sqrt[4]{18}e^{i\frac{13\pi}{8}} \end{gathered}

Answer:

The four roots in exponential form are

z0 = 18^(1/4)*e^(i*π/8)

z1 = 18^(1/4)*e^(i*5π/8)

z2 = 18^(1/4)*e^(i*9π/8)

z3 = 18^(1/4)*e^(i*13π/8)

5 0
1 year ago
Katie has $20 and buy 3 packs of marker for $4 how many left
aleksklad [387]
Answer $8


3*4=12


20-12=8
8 0
4 years ago
Read 2 more answers
Lanie’s room is in the shape of a parallelogram.
VladimirAG [237]

Answer:yes 108 is more than 60

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • Can someone help me with this question ?
    14·2 answers
  • Please help!! I have tried it on my own and I am stuck
    6·1 answer
  • Raise 8 to the 5th power, then subtract the result from h. What would the expression be?
    5·1 answer
  • Help me plz!!!******
    11·1 answer
  • Which expression represents the largest number?
    13·1 answer
  • How to find the domain of a rational function?
    11·1 answer
  • I need help on this. Thanks,<br><br> (picture attached)
    10·1 answer
  • I Need help pls!<br> What is 75% of 800?<br> A; 9 3/8<br> B; 10.66
    12·1 answer
  • EMERGENCY PLS HELP: Solve the right triangle. Round lengths to the nearest tenth and angles to the nearest degree.
    10·1 answer
  • Children. The
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!