To find the measure of angle OPQ, we have two equations...
y+5x-17=180 because angles OPN and OPQ are supplementary...
AND
x+17+2x-4+y=180 because the total degrees of a triangle must add up to 180.
The equations...
5x+y=197
3x+y=167
solce the system of equations...
x=15
y=122
Since we wanted to solve for y, 122 is the answer.
The measure of angle OPQ is 122.
Sorry this took forever. The website is hard to use because I'm used to using the app:)
Best of wishes!
Answer:
La edad actual de Beatriz es de:
30 años
Step-by-step explanation:
Planteamiento:
5e = 4b
(e+3) + (b+3) = 60
e = edad actual de José
b = edad actual de Beatriz
Desarrollo:
de la segunda ecuación del planteamiento:
e + b + 6 = 60
e + b = 60 - 6
e + b = 54
e = 54 - b
sustituyendo este último valor en la primer ecuación del planteamiento:
5(54-b) = 4b
5*54 + 5*-b = 4b
270 - 5b = 4b
270 = 4b + 5b
270 = 9b
b = 270/9
b = 30
e = 54 - b
e = 54 - 30
e = 24
Comprobación:
5e = 4b
5*24 = 4*30 = 120
We have to calculate the fourth roots of this complex number:
![z=9+9\sqrt[]{3}i](https://tex.z-dn.net/?f=z%3D9%2B9%5Csqrt%5B%5D%7B3%7Di)
We start by writing this number in exponential form:
![\begin{gathered} r=\sqrt[]{9^2+(9\sqrt[]{3})^2} \\ r=\sqrt[]{81+81\cdot3} \\ r=\sqrt[]{81+243} \\ r=\sqrt[]{324} \\ r=18 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20r%3D%5Csqrt%5B%5D%7B9%5E2%2B%289%5Csqrt%5B%5D%7B3%7D%29%5E2%7D%20%5C%5C%20r%3D%5Csqrt%5B%5D%7B81%2B81%5Ccdot3%7D%20%5C%5C%20r%3D%5Csqrt%5B%5D%7B81%2B243%7D%20%5C%5C%20r%3D%5Csqrt%5B%5D%7B324%7D%20%5C%5C%20r%3D18%20%5Cend%7Bgathered%7D)
![\theta=\arctan (\frac{9\sqrt[]{3}}{9})=\arctan (\sqrt[]{3})=\frac{\pi}{3}](https://tex.z-dn.net/?f=%5Ctheta%3D%5Carctan%20%28%5Cfrac%7B9%5Csqrt%5B%5D%7B3%7D%7D%7B9%7D%29%3D%5Carctan%20%28%5Csqrt%5B%5D%7B3%7D%29%3D%5Cfrac%7B%5Cpi%7D%7B3%7D)
Then, the exponential form is:

The formula for the roots of a complex number can be written (in polar form) as:

Then, for a fourth root, we will have n = 4 and k = 0, 1, 2 and 3.
To simplify the calculations, we start by calculating the fourth root of r:
![r^{\frac{1}{4}}=18^{\frac{1}{4}}=\sqrt[4]{18}](https://tex.z-dn.net/?f=r%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%3D18%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%3D%5Csqrt%5B4%5D%7B18%7D)
<em>NOTE: It can not be simplified anymore, so we will leave it like this.</em>
Then, we calculate the arguments of the trigonometric functions:

We can now calculate for each value of k:
![\begin{gathered} k=0\colon \\ z_0=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{0}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{0}{2}))) \\ z_0=\sqrt[4]{18}\cdot(\cos (\frac{\pi}{8})+i\cdot\sin (\frac{\pi}{8}) \\ z_0=\sqrt[4]{18}\cdot e^{i\frac{\pi}{8}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20k%3D0%5Ccolon%20%5C%5C%20z_0%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B0%7D%7B2%7D%29%29%2Bi%5Ccdot%5Csin%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B0%7D%7B2%7D%29%29%29%20%5C%5C%20z_0%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cfrac%7B%5Cpi%7D%7B8%7D%29%2Bi%5Ccdot%5Csin%20%28%5Cfrac%7B%5Cpi%7D%7B8%7D%29%20%5C%5C%20z_0%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%20e%5E%7Bi%5Cfrac%7B%5Cpi%7D%7B8%7D%7D%20%5Cend%7Bgathered%7D)
![\begin{gathered} k=1\colon \\ z_1=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{1}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{1}{2}))) \\ z_1=\sqrt[4]{18}\cdot(\cos (\frac{5\pi}{8})+i\cdot\sin (\frac{5\pi}{8})) \\ z_1=\sqrt[4]{18}e^{i\frac{5\pi}{8}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20k%3D1%5Ccolon%20%5C%5C%20z_1%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B1%7D%7B2%7D%29%29%2Bi%5Ccdot%5Csin%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B1%7D%7B2%7D%29%29%29%20%5C%5C%20z_1%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cfrac%7B5%5Cpi%7D%7B8%7D%29%2Bi%5Ccdot%5Csin%20%28%5Cfrac%7B5%5Cpi%7D%7B8%7D%29%29%20%5C%5C%20z_1%3D%5Csqrt%5B4%5D%7B18%7De%5E%7Bi%5Cfrac%7B5%5Cpi%7D%7B8%7D%7D%20%5Cend%7Bgathered%7D)
![\begin{gathered} k=2\colon \\ z_2=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{2}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{2}{2}))) \\ z_2=\sqrt[4]{18}\cdot(\cos (\frac{9\pi}{8})+i\cdot\sin (\frac{9\pi}{8})) \\ z_2=\sqrt[4]{18}e^{i\frac{9\pi}{8}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20k%3D2%5Ccolon%20%5C%5C%20z_2%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B2%7D%7B2%7D%29%29%2Bi%5Ccdot%5Csin%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B2%7D%7B2%7D%29%29%29%20%5C%5C%20z_2%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cfrac%7B9%5Cpi%7D%7B8%7D%29%2Bi%5Ccdot%5Csin%20%28%5Cfrac%7B9%5Cpi%7D%7B8%7D%29%29%20%5C%5C%20z_2%3D%5Csqrt%5B4%5D%7B18%7De%5E%7Bi%5Cfrac%7B9%5Cpi%7D%7B8%7D%7D%20%5Cend%7Bgathered%7D)
![\begin{gathered} k=3\colon \\ z_3=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{3}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{3}{2}))) \\ z_3=\sqrt[4]{18}\cdot(\cos (\frac{13\pi}{8})+i\cdot\sin (\frac{13\pi}{8})) \\ z_3=\sqrt[4]{18}e^{i\frac{13\pi}{8}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20k%3D3%5Ccolon%20%5C%5C%20z_3%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B3%7D%7B2%7D%29%29%2Bi%5Ccdot%5Csin%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B3%7D%7B2%7D%29%29%29%20%5C%5C%20z_3%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cfrac%7B13%5Cpi%7D%7B8%7D%29%2Bi%5Ccdot%5Csin%20%28%5Cfrac%7B13%5Cpi%7D%7B8%7D%29%29%20%5C%5C%20z_3%3D%5Csqrt%5B4%5D%7B18%7De%5E%7Bi%5Cfrac%7B13%5Cpi%7D%7B8%7D%7D%20%5Cend%7Bgathered%7D)
Answer:
The four roots in exponential form are
z0 = 18^(1/4)*e^(i*π/8)
z1 = 18^(1/4)*e^(i*5π/8)
z2 = 18^(1/4)*e^(i*9π/8)
z3 = 18^(1/4)*e^(i*13π/8)
Answer:yes 108 is more than 60
Step-by-step explanation: