<span>Aristotle would say that an object comes to rest because it got tired. Aristotle came up with ideas, but never tested them.
Galileo used experiments and mathematical models to analyze motion. He used a slanted inclined plane an order to slow down the acceleration due to gravity on an object. He found out that an object accelerates as it falls. </span>
Answer:
Energy implies as the object’s capability to perform work. It is something that cannot be created or destroyed but can only be transformed. An object loses its energy, when it performs work, whereas it gains energy when the work is performed on it. Energy is broadly classified as kinetic energy and potential energy. While kinetic energy is the energy which an object contains because of a particular motion.
On the other hand, potential energy is the stored energy, because of its state of rest. As both the two forms of energy are measured in joules, people get easily confused between these two. So, take a read of the article which will help you to understand the differences between kinetic and potential energy.
Explanation:
Hope this helps - Good luck ^w
The minimum speed with which Captain Brady had to run off the edge of the cliff to make it safely to the far side of the river is around 6 meters per second.
<h3>Further explanation</h3>
This is a free fall 2-dimensional type of problem, therefor we can write equations for both dimensions which model the fall of captain Brady. Let's call <em>x </em>the distance travelled by the captain on the horizontal direction and <em>y </em>the distance travelled on the vertical direction.
Lets suppose that Brady jumped with a complete horizontal velocity from a point which we will call the origin (meaning zero horizontal and vertical displacement), and let's call <em>ta</em> the time it took for captain Brady to reach the river (meaning the time he spent on the air). The equations of motion for the captain will be:


We know that at time <em>ta</em> the captain would have traveled 6.7 m on the horizontal direction, and 6.1 m in the vertical direction. Therefor we can write that:


Which gives us a system of 2 equations and 2 unknowns (<em>V</em> and <em>ta</em>). From the second equation we can solve for <em>ta</em> as:

And solving for <em>V</em> on the first equation, we find that:

Which is almost 6 meters per second.
<h3>Learn more</h3>
<h3>Keywords</h3>
Free fall, projectile, gravity
Fluid Dynamics is an area of research that started a long time ago, along with Calculus. It combines techniques of Mathematical Analysis and of Dynamical Systems, such as Bifurcation Theory, among others.
<h3>What is surface tension?</h3>
Surface Tension is a phenomenon that occurs in all liquids, it is characterized by the formation of a kind of elastic membrane at its ends.
<h3>How to calculate the contact angle?</h3>
Contact angles in powders can be measured using the sessile drop measurement in the compressed powder or using the force tensiometer with the Washburn method.
In fluid dynamics, the variables of surface tension, viscosity and contact angle are treated. When dealing with viscosity we have fluid can be viscous or a real fluid. In general, fluids are viscous.
See more about fluid dynamics at brainly.com/question/5144636
#SPJ1