Answer with Explanation:
We are given that


Charge on proton,q=
a.We have to find the electric potential of the proton at the position of the electron.
We know that the electric potential

Where 


B.Potential energy of electron,U=
Where
Charge on electron
=Charge on proton
Using the formula


Aaron's car is moving at speed of 30 m/s
His reaction time is given as 0.7 s
but when he is tired the reaction time is doubled
Now we need to find the distance covered by his car when he is tired during the time when he react to apply brakes
So here since during this time speed is given as constant so we can say that distance covered can be product of speed and time
So here we can use



So the car will move to 42 m during the time when he apply brakes
1. Millions of gallons of water are wasted by households in America on a yearly basis as a result of wastage of water in the laundry rooms. There are many ways by which water can be conserved in the laundry room, these include:
1. Using a high efficiency washing machine.
2. Choosing the right load sizes and cycles when using washing machines.
3. Wearing clothes more than once before washing them.
4. Collection of grey and rain water.
5. Treat difficult stains before washing them.
2. Using a high efficiency machine will ensure that water is used efficiently. A high efficiency washing machine uses much less water and save about 6,000 gallons of water for an average family on a yearly basis according to Environmental Protection Agency.
Grey water refers to water that have used once. Water that has been used for washing clothes or bathing can be collected again, recycle and use for some household needs such as gardening, flushing of toilet, etc. Water tanks can also be installed to collect rain water which can be used for washing clothes. This will have positive effect on household overall water consumption.
the difference between a resultant and equilibrant vector is that resultant vector is a direct quantity, one with both magnitude and direction, while the equilibrant vector is a force equal to, but opposite of, the resultant sum of vector forces, that force which balances other forces.