Answer:
f(g(-8)) = -26
Step-by-step explanation:
Given:
f(x)=2x and g(x)=2x+3
Required:
f(g(-8))=?
Solution:
First we will find g(-8)
g(x) = 2x+3
g(-8)= 2(-8)+3
= -16 + 3
= -13.
so, g(-8) = -13
Now, for calculation f(g(-8)) we can put the value of g(-8) i.e, -13
so, f(x) = 2x
f(-13) = 2(-13)
= -26
so, f(-13) = -26
and f(g(-8)) = -26
I am assuming 33 is B^(2/3) times B^(1/2)
See the following image
The valid probability distributions are the ones in options C and D.
<h3>
Which of the following are valid probability distributions?</h3>
For discrete random variables with probabilities p₁, p₂, ..., pₙ, there are two rules:
- All of these probabilities are numbers between 0 and 1.
- p₁ + p₂ + ... + pₙ = 1.
So, for the first rule we can discard the first option, where we have negative probabilities.
To check the other 4 options, just add the probabilities and see if the addition gives 1.
The options that add up to 1 are C and D, so these two are the correct options.
D: 1/5 + 1/10 + 1/10 + 1/10 + 1/5 + 1/10 + 1/10 + 1/10 = 1
C: 1/6 + 1/6 + 1/6 + 1/6 + 1/6 + 1/6 = 1
If you want to learn more about probability:
brainly.com/question/25870256
#SPJ1
Answer:
What the American dream means to me is freedom. By freedom I mean everyone has the rights that a American citizen has. But also not having everyone thing be about politics and have everything be about what’s best for the American people, but also a place where no one is judged for what they believe in, but instead have their beliefs glorified. That is what the *American Dream* Means to me.
*-This is all in my on words-*
(Hope this helps)
Yours Truely, TheAnimeCatUwU
Answer:
The answer is (d) ⇒ ![pq^{2}r\sqrt[3]{pr^{2}}](https://tex.z-dn.net/?f=pq%5E%7B2%7Dr%5Csqrt%5B3%5D%7Bpr%5E%7B2%7D%7D)
Step-by-step explanation:
* To simplify the cube roots:
If its number then the number must be written in the form x³
then we divide the power by 3 to cancel the radical
If its variable we divide its power by 3 to cancel the radical
∵ ![\sqrt[3]{p^{4}q^{6}r^{5}}=p^{\frac{4}{3}}q^{\frac{6}{3}}r^{\frac{5}{3}}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bp%5E%7B4%7Dq%5E%7B6%7Dr%5E%7B5%7D%7D%3Dp%5E%7B%5Cfrac%7B4%7D%7B3%7D%7Dq%5E%7B%5Cfrac%7B6%7D%7B3%7D%7Dr%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D)
∴ 
∵ ![p^{\frac{1}{3}}=\sqrt[3]{p}](https://tex.z-dn.net/?f=p%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%3D%5Csqrt%5B3%5D%7Bp%7D)
∵ ![r^{\frac{2}{3}}=\sqrt[3]{r^{2}}](https://tex.z-dn.net/?f=r%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%3D%5Csqrt%5B3%5D%7Br%5E%7B2%7D%7D)
∴ ![p(p)^{\frac{1}{3}}q^{2}r(r)^{\frac{2}{3}}=p(\sqrt[3]{p})q^{2}r(\sqrt[3]{r^{2}})](https://tex.z-dn.net/?f=p%28p%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7Dq%5E%7B2%7Dr%28r%29%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%3Dp%28%5Csqrt%5B3%5D%7Bp%7D%29q%5E%7B2%7Dr%28%5Csqrt%5B3%5D%7Br%5E%7B2%7D%7D%29)
∴ ![prq^{2}\sqrt[3]{pr^{2}}}](https://tex.z-dn.net/?f=prq%5E%7B2%7D%5Csqrt%5B3%5D%7Bpr%5E%7B2%7D%7D%7D)
∴ The answer is (d)