<h2>Answer-Average rate of change(A(x)) of f(x) over a interval [a,b] is given by:</h2><h2 /><h2>A(x) = \frac{f(b)-f(a)}{b-a}A(x)= </h2><h2>b−a</h2><h2>f(b)−f(a)</h2><h2> </h2><h2> </h2><h2 /><h2>Given the function:</h2><h2 /><h2>f(x) = 20 \cdot(\frac{1}{4})^xf(x)=20⋅( </h2><h2>4</h2><h2>1</h2><h2> </h2><h2> ) </h2><h2>x</h2><h2> </h2><h2 /><h2>We have to find the average rate of change from x = 1 to x= 2</h2><h2 /><h2>At x = 1</h2><h2 /><h2>then;</h2><h2 /><h2>f(x) = 20 \cdot(\frac{1}{4})^1 = 5f(x)=20⋅( </h2><h2>4</h2><h2>1</h2><h2> </h2><h2> ) </h2><h2>1</h2><h2> =5</h2><h2 /><h2>At x = 2</h2><h2 /><h2>then;</h2><h2 /><h2>f(x) = 20 \cdot(\frac{1}{4})^2=20 \cdot \frac{1}{16} = 1.25f(x)=20⋅( </h2><h2>4</h2><h2>1</h2><h2> </h2><h2> ) </h2><h2>2</h2><h2> =20⋅ </h2><h2>16</h2><h2>1</h2><h2> </h2><h2> =1.25</h2><h2 /><h2>Substitute these in above formula we have;</h2><h2 /><h2>A(x) = \frac{f(2)-f(1)}{2-1}A(x)= </h2><h2>2−1</h2><h2>f(2)−f(1)</h2><h2> </h2><h2> </h2><h2 /><h2>⇒A(x) = \frac{1.25-5}{1}=-3.75A(x)= </h2><h2>1</h2><h2>1.25−5</h2><h2> </h2><h2> =−3.75</h2><h2 /><h2>therefore, average rate of change of the function f(x) from x = 1 to x = 2 is, -3.75</h2>
<h2>Please Mark me as brainlist. </h2>
Answer:
0a23,02A3
Step-by-step explanation:
I think that this is the right answer Im sorry if it is wrong
Answer:
A 1/2
Step-by-step explanation:
Ratio of short length to hypotenuse
= cos60
= 1/2
Answer:
Volume of a sphere = 4πr³/3
r=10
V = 4πx10³/3
=4000π/3
V= 1333.33π (in terms of pi)
or
V= 4188.79(Nearest Hundredth).
Answer:
x=3
y=5
Step-by-step explanation:
x+5y=28 (i)
-x-2y=-13. (ii)
add equation 2 from equation 1
x+5y=28
-x-2y=-13
3y=15
y=5
put the value of y in equation 1
x+5y=28
x+5*5=28
x+25=28
x=28-25
x=3