1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Viktor [21]
3 years ago
8

HELP ASAP THIS IS TIMED ​

Mathematics
1 answer:
Kitty [74]3 years ago
7 0

C 3/4÷12

You Welcome :)

Answer: C

You might be interested in
Determine the greatest common factor of the following expressions<br> (4x2y2, 3xy4, 2xy2
SashulF [63]
12xy i think lol :) hope that helps a bit 
4 0
3 years ago
A ball is dropped from a certain height. The function below represents the height f(n), in feet, to which the ball bounces at th
fredd [130]

Answer:

Initial height or what the ball was originally bounced from a height of 9 feet

Step-by-step explanation:

9 represents the height that the ball was originally bounced from.

If you plug in 0 for n into f(n)=9(0.7)^n, you get:

f(0)=9(0.7)^0=9(1)=9.

9 feet is the initial height since that is what happens at time zero.

7 0
3 years ago
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
3 years ago
Read 2 more answers
What is (3x-4)^2 in expanded form
34kurt
(3x-4)(3x-4) is the answer because when something is squared, it's just multiplying itself by itself, this also applies to expressions.
7 0
3 years ago
Solve the equations below:
Lelu [443]
<h2><em><u>Answ</u></em><em><u>er</u></em><em><u>:</u></em><em><u>-</u></em></h2>

<h3>1.) 3x + 2 = 15</h3>

➪ 3x = 15 - 2

➪ 3x = 13

★ \large\pink{x = \sf{\dfrac{13}{3}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

<h3>2.) 5x - 8 = 52</h3>

➪ 5x = 52 + 8

➪ 5x = 60

➪ x = \sf\dfrac{60}{5}

★ \large\pink{x = 12}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

<h3>3.) 2(x+1) = 14</h3>

➪ 2x + 2 = 14

➪ 2x = 14 - 2

➪ 2x = 12

➪ x = \sf\dfrac{12}{2}

★ \large\pink{x = 6}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

<h3>4.) 1/4 x + 6 = 12</h3>

➪ \sf\dfrac{1}{4} \times x = 12 - 6

➪ \sf\dfrac{1}{4} \times x = 6

➪ \sf 1 \times x = 6 \times 4

★ \large\pink{x = 24}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

<h3>5.) 1/5 + 2y = 2/5</h3>

➪ \sf 2y = \dfrac{2}{5} - \dfrac{1}{5}

➪ \sf 2y = \dfrac{2-1}{5}

➪ \sf 2y = \dfrac{1}{5}

➪ \sf y = \dfrac{1}{5 \times 2}

★ \large\pink{y = \dfrac{1}{10}}

5 0
3 years ago
Other questions:
  • Is hunter license a form of a tax
    12·1 answer
  • A rectangle has vertices at these coordinates (0,8),(5,8),(5,0) what are the coordinates of the fourth vertex of the rectangle
    9·2 answers
  • The derivative of the function f is given by f′(x)=−3x+4 for all x, and f(−1)=6. Which of the following is an equation of the li
    13·1 answer
  • Which of the following expressions are equivalent to 8 3/2
    11·2 answers
  • An auto transport truck holds 12 cars. A car dealer plans to bring in 1,006 new cars in June and July. If an auto transport truc
    7·1 answer
  • Pls help plsssssssssssss
    11·1 answer
  • I need help please. I need the the discount and selling price. Thank you
    11·1 answer
  • Which is the solution to the inequality 2 3/5 b-8/15
    7·2 answers
  • What is 3k-14=3(k-5)+1 ?
    5·1 answer
  • Mike uses 22 ounces of lemon juice to make one pitcher of lemonade. He has 572 ounces of lemon juice. How many pitchers of lemon
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!