Answer:
a) 3.5 m
b) 14 secs
c) 1.4 secs
Explanation:
<u>a) Determine the distance the particle will travel</u>
given velocity ( final velocity ) = 5 m/s
v^2 = u^2 + 2as
s = ( v^2 - u^2 ) / 2a
= ( 5^2 - 8^2 ) / 2 ( -0.5 * 5^3/2 )
= 3.5 m
<u>b) Determine the time when v = 1m/s</u>
V = u + at
1 = 8 + ( -0.5 * 1^3/2 ) * t
∴ t = 14 secs
c) Determine the time required for particle to travel 8 m
<em>we will employ both equations above </em>
V^2 = u^2 + 2as
s = 8 m , V = unknown , u = 8 m/s back to equation
V^2 = 8^2 + 2 ( - 1/2 * V^3/2 ) * 8
∴ V^2 + 8V^3/2 - 64 = 0
resolving the above equation
V = 3.478 m/s
now using the second equation
V = u + at
3.478 = 8 + ( - 1/2 * 3.478^3/2 ) * t
hence : t = 1.4 secs
Answer:
A. True
The bilinear transform is employed in digital signal processing and discrete-time control theory which helps in transforming continuous-time system representations to discrete-time
Answer:
I=9.6×e^{-8} A
Explanation:
The magnetic field inside the solenoid.
B=I*500*muy0/0.3=2.1×e ^-3×I.
so the total flux go through the square loop.
B×π×r^2=I×2.1×e^-3π×0.025^2
=4.11×e^-6×I
we have that
(flux)'= -U
so differentiating flux we get
so the inducted emf in the loop.
U=4.11×e^{-6}×dI/dt=4.11×e^-6×0.7=2.9×e^-6 (V)
so, I=2.9×e^{-6}÷30
I=9.6×e^{-8} A