1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
HACTEHA [7]
3 years ago
5

If a ball is dropped from a height​ (H) its velocity will increase until it hits the ground​ (assuming that aerodynamic drag due

to the air is​ negligible). During its​ fall, its initial potential energy is converted into kinetic energy. If the ball is dropped from a height of 720 centimeters​ [cm], and the impact velocity is 39 feet per second​ [ft/s], determine the value of gravity in units of meters per second squared ​[m/s2​].
Engineering
1 answer:
enot [183]3 years ago
4 0

Answer

Explanation:

so the velocity is 39 feet per sec so the impact is 720 cm from the ground

take 720 * 39 sq

You might be interested in
Which of the following is not caused by alcohol?
Brrunno [24]

Answer:

Inhibited comprehension

4 0
2 years ago
Read 2 more answers
30POINTS
garri49 [273]
Concentrating solar power (CSP) plants use mirrors to concentrate the sun's energy to drive traditional steam turbines or engines that create electricity. The thermal energy concentrated in a CSP plant can be stored and used to produce electricity when it is needed, day or night. Today, roughly 1,815 megawatts (MWac) of CSP plants are in operation in the United States.

Parabolic Trough
Parabolic trough systems use curved mirrors to focus the sun’s energy onto a receiver tube that runs down the center of a trough. In the receiver tube, a high-temperature heat transfer fluid (such as a synthetic oil) absorbs the sun’s energy, reaching temperatures of 750°F or higher, and passes through a heat exchanger to heat water and produce steam. The steam drives a conventional steam turbine power system to generate electricity. A typical solar collector field contains hundreds of parallel rows of troughs connected as a series of loops, which are placed on a north-south axis so the troughs can track the sun from east to west. Individual collector modules are typically 15-20 feet tall and 300-450 feet long.

Compact Linear Fresnel Reflector
CLFR uses the principles of curved-mirror trough systems, but with long parallel rows of lower-cost flat mirrors. These modular reflectors focus the sun's energy onto elevated receivers, which consist of a system of tubes through which water flows. The concentrated sunlight boils the water, generating high-pressure steam for direct use in power generation and industrial steam applications.
3 0
3 years ago
Read 2 more answers
Joey has a car that uses the hand crank to open the windows. Joey is wondering where the energy comes from to open the windows.T
Sedaia [141]

Explanation:

Joey has a car that uses the hand crank to open the windows. Joey is wondering where the energy comes from to open the windows.The sunHuman-powered energy from JoeyThe hand crankThe moving car

5 0
3 years ago
An Ideal gas is being heated in a circular duct as while flowing over an electric heater of 130 kW. The diameter of duct is 500
Rashid [163]

Answer:

Exit temperature = 32 °C

Explanation:

We are given;

Initial Pressure;P1 = 100 KPa

Cp =1000 J/kg.K = 1 KJ/kg.k

R = 500 J/kg.K = 0.5 Kj/Kg.k

Initial temperature;T1 = 27°C = 273 + 27K = 300 K

volume flow rate;V' = 15 m³/s

W = 130 Kw

Q = 80 Kw

Using ideal gas equation,

PV' = m'RT

Where m' is mass flow rate.

Thus;making m' the subject, we have;

m' = PV'/RT

So at inlet,

m' = P1•V1'/(R•T1)

m' = (100 × 15)/(0.5 × 300)

m' = 10 kg/s

From steady flow energy equation, we know that;

m'•h1 + Q = m'h2 + W

Dividing through by m', we have;

h1 + Q/m' = h2 + W/m'

h = Cp•T

Thus,

Cp•T1 + Q/m' = Cp•T2 + W/m'

Plugging in the relevant values, we have;

(1*300) - (80/10) = (1*T2) - (130/10)

Q and M negative because heat is being lost.

300 - 8 + 13 = T2

T2 = 305 K = 305 - 273 °C = 32 °C

13000 + 300 - 8000 = T2

6 0
3 years ago
Define waves as it applies to electromagnetic fields
julsineya [31]

Waves in the electric and magnetic fields are known as electromagnetic waves. You must first understand what a field is, which is just a technique of giving each square inch of space a numerical value. You may see that as a temperature field, for instance, when you look at the weather predictions and they mention the temperature in several locations. Every location on Earth has a unique temperature that can be quantified. Everywhere on Earth has its own wind velocity, which is another form of field. This field differs somewhat from the temperature field in that the wind velocity has both a direction and a magnitude, whereas the temperature just has a magnitude (how hot it is). A vector is a quantity that has both magnitude and direction, hence a field that contains vectors at every location is referred to as a vector field. Vector fields include the magnetic and electric fields. We may examine what would happen if we placed a charged particle at any given position in space. If the charged particle were to accelerate, we would state that the electric field there is the direction in which the particle is moving. In general, positively charged particles will move in the electric field's direction, whereas negatively charged particles will move in the opposite way. Because it is a vector field, the magnetic field exhibits comparable behavior. We discovered in the 19th century that the same interaction, electromagnetism, really produces both electric and magnetic fields. Like an electromagnet, a changing electric field will produce a magnetic field, and a changing magnetic field will induce an electric field (like in a generator). If your system is configured properly, you may have an electric field that fluctuates, which in turn produces a magnetic field, which in turn induces another electric field, which in turn generates another magnetic field, and so on indefinitely. At the speed of light, this oscillation between a strong magnetic field and strong electric field spreads out indefinitely. In reality, light is an electromagnetic wave—an oscillation in the electromagnetic fields. An electric or magnetic field may exist without a medium since they exist in a vacuum, which implies that waves in these fields don't require a medium like sound to flow through.

5 0
2 years ago
Other questions:
  • Sketch the velocity profile for laminar and turbulent flow.
    15·1 answer
  • Please help! timed test. This about electrical control. Please be serious.
    15·1 answer
  • Which of the following describes a product concept?
    15·1 answer
  • Thoughts on Anime?<br> Whats your fav
    10·2 answers
  • 1. A hydro facility operates with an elevation difference of 50 m and a flow rate of 500 m3/s. If the rotational speed is 90 RPM
    12·1 answer
  • What are the specifications state that all work shall be done?
    10·1 answer
  • 1. You should
    11·2 answers
  • NO SCAMS
    9·2 answers
  • Why is communication one of the most important aspects of an engineer's job?
    12·1 answer
  • Which type of line is represented by thin, short dashes?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!