Answer:
1.44 atm
Explanation:
Step 1:
We'll begin by calculating the number of mole in 2,800,000 Liter of air.
I mole of air occupy 22.4L.
Therefore, Xmol of air will occupy 2800000L i.e
Xmol of air = 2800000/22.4
Xmol of air = 125000 moles
Step 2:
Determination of the pressure when the balloon is fully inflated .
This can be obtained as follow:
Number of mole (n) of air = 125000 moles
Volume (V) = 2800000 L
Temperature (T) = 120°C = 120°C + 273 = 393K
Gas constant (R) = 0.082atm.L/Kmol
Pressure (P) =.?
PV = nRT
Divide both side V
P= nRT/V
P= (125000x0.082x393) / 2800000
P = 1.44 atm
Therefore, the pressure of the air when the balloon is fully inflated is 1.44 atm
Answer: a) 0.070 moles of oxygen were produced.
b) New pressure due to the oxygen gas is 2.4 atm
Explanation:
According to ideal gas equation:

P = pressure of gas = 2.7 atm
V = Volume of gas = 700 ml = 0.7 L
n = number of moles = ?
R = gas constant =
T =temperature = 329 K


Thus 0.070 moles of oxygen were produced.
When the 700 mL flask cools to a temperature of 293K.




The new pressure due to the oxygen gas is 2.4 atm
When two liquids are completely soluble in each other in all proportions, they are said to be miscible<span>. For example, ethanol and water are </span>miscible<span>. If the liquids do not mix, they are said to be </span>immiscible<span>.</span>
<u>Answer:</u> The given sample of water is not safe for drinking.
<u>Explanation:</u>
We are given:
Concentration of fluorine in water recommended = 4.00 ppm
ppm is the amount of solute (in milligrams) present in kilogram of a solvent. It is also known as parts-per million.
To calculate the ppm of fluorine in water, we use the equation:

Both the masses are in grams.
We are given:
Mass of fluorine =
(Conversion factor: 1 g = 1000 mg)
Mass of water = 5.00 g
Putting values in above equation, we get:

As, the calculated concentration is greater than the recommended concentration. So, the given sample of water is not safe for drinking.
Hence, the given sample of water is not safe for drinking.