Answer:
k = [F2]² [PO]² / [P2] [F2O]²
Explanation:
In a chemical equilibrium, the equilibrium constant expression is written as the ratio between the molar concentration of the products over the molar concentration of the reactants. Each species powered to its reaction coefficient. For the equilibrium:
P2(g) + 2F2O(g) ⇄ 2PO(g) + 2F2(g)
The equilibrium constant, k, is:
k = [F2]² [PO]² / [P2] [F2O]²
Answer:
18.2 g.
Explanation:
You need to first figure out how many moles of nitrogen gas and hydrogen (gas) you have. To do this, use the molar masses of nitrogen gas and hydrogen (gas) on the periodic table. You get the following:
0.535 g. N2 and 1.984 g. H2
Then find out which reactant is the limiting one. In this case, it's N2. The amount of ammonia, then, that would be produced is 2 times the amount of moles of N2. This gives you 1.07 mol, approximately. Then multiply this by the molar mass of ammonia to find your answer of 18.2 g.
I think one is Hydrochloric acid
Answer : The volume of stock solution needed are, 12.5 mL
Explanation :
Formula used :

where,
are the initial molarity and volume of copper (II) chloride.
are the final molarity and volume of stock solution of copper (II) chloride.
We are given:

Putting values in above equation, we get:

Hence, the volume of stock solution needed are, 12.5 mL
Answer:
write a question and answer it with the words
Explanation:
Gloria/ the bank/ the car
A: where is Gloria going? To the bank, right?
B: Yes, she's going to the bank. She's going in a car.