Answer:
<u>Value of the blank </u>(We assumed it as
while solving)<u> :-</u>
![\boxed {\tt x = \cfrac{1}{3}}](https://tex.z-dn.net/?f=%20%5Cboxed%20%7B%5Ctt%20x%20%3D%20%20%5Ccfrac%7B1%7D%7B3%7D%7D%20)
<u>Actual answer :-</u>
![\boxed{\tt \: 3 \times \boxed{\cfrac{1}{3}} = 1}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Ctt%20%5C%3A%203%20%5Ctimes%20%20%5Cboxed%7B%5Ccfrac%7B1%7D%7B3%7D%7D%20%20%3D%201%7D)
Step-by-step explanation:
<u>Given equation :-</u>
![\sf 3 \times ? = 1](https://tex.z-dn.net/?f=%5Csf%203%20%5Ctimes%20%3F%20%3D%201)
(<u>Note</u>: I wrote "?" instead of "blank".)
<em>We need to find the value of the blank on this equation</em>.
<u>Solution:-</u>
To solve Further let's us assume that the value of the blank be
.
So, blank = ![x](https://tex.z-dn.net/?f=x)
The equation will be . . .
![\sf \longmapsto3 \times x = 1](https://tex.z-dn.net/?f=%5Csf%20%5Clongmapsto3%20%5Ctimes%20x%20%3D%201)
Let's solve out this equation !
![\sf \implies3 \times x = 1](https://tex.z-dn.net/?f=%5Csf%20%5Cimplies3%20%5Ctimes%20x%20%3D%201)
<u>Multiply 3 and x on the LHS :-</u>
![\sf \implies3 x = 1](https://tex.z-dn.net/?f=%5Csf%20%5Cimplies3%20x%20%3D%201)
<em>Hence the new equation would be </em>3
=1.
<u>Now, Divide both sides by 3 :-</u>
![\sf \implies \: \cfrac{3x}{3} = \cfrac{1}{3}](https://tex.z-dn.net/?f=%5Csf%20%5Cimplies%20%5C%3A%20%20%5Ccfrac%7B3x%7D%7B3%7D%20%20%3D%20%20%5Ccfrac%7B1%7D%7B3%7D%20)
<u>Simplify this equation :-</u>
Cancel 3 and 3 on the LHS, Leave
. 1/3 can't be cancelled.
![\sf \implies \: \cfrac{ \cancel3}{ \cancel3x} = \cfrac{1}{3}](https://tex.z-dn.net/?f=%5Csf%20%5Cimplies%20%5C%3A%20%20%5Ccfrac%7B%20%5Ccancel3%7D%7B%20%20%5Ccancel3x%7D%20%20%3D%20%5Ccfrac%7B1%7D%7B3%7D%20)
![\sf \implies1x = \cfrac{1}{3}](https://tex.z-dn.net/?f=%5Csf%20%5Cimplies1x%20%3D%20%20%5Ccfrac%7B1%7D%7B3%7D%20)
As we know that x = 1x So,
![\sf \implies \: x = \cfrac{1}{3}](https://tex.z-dn.net/?f=%5Csf%20%5Cimplies%20%5C%3A%20x%20%3D%20%20%5Ccfrac%7B1%7D%7B3%7D%20)
<em>This equation can't be simplified more.</em>
Hence, the value of
would be 1/3.
<u>Now,Put the value of </u><u>
</u><u> </u><u>(1/3) on the given equation:-</u>
![\sf \implies \: 3 \times \: \cfrac{1}{3} \: = 1](https://tex.z-dn.net/?f=%5Csf%20%5Cimplies%20%5C%3A%20%203%20%5Ctimes%20%20%5C%3A%20%5Ccfrac%7B1%7D%7B3%7D%20%20%5C%3A%20%20%20%3D%201)
We are done !
______________________________________
I hope this helps !
Let me know if you have any questions.
![\Huge\sf :)](https://tex.z-dn.net/?f=%5CHuge%5Csf%20%3A%29%20)