Answer:
Q = 1360.248 j
Explanation:
Given data:
Mass of brass = 298.3 g
Initial temperature = 30.0°C
Final temperature = 150°C
Specific heat capacity of brass = 0.038 J/g.°C
Heat absorbed = ?
SOLUTION:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 150°C - 30.0°C
ΔT = 120°C
Q = 298.3 g × 0.038 J/g.°C × 120°C
Q = 1360.248 j
1) V(CH₄) = 0,376 L.T(CH₄) = 304 K.p(CH₄) = 1,5 atm 101325 Pa/atm = 151987,5 Pa = 151,9875 kPa.R = 8,314 J/K·mol.Use ideal gas law: p·V = n·R·T.n(CH₄) = p · V ÷ R · T.n(CH₄) = 151,9875 kPa · 0,376 L ÷ 8,314 J/K· mol · 304 K.n(CH₄) = 0,0226 mol.V(CH₄) = n(CH₄) · Vm.V(CH₄) = 0,0226 mol · 22,4 dm³/mol.V(CH₄) = 0,506 dm³ = 0,506 L.
2) V(SO₂) = 5,2 L.p(SO₂) = 45,2 atm = 45,2 atm · 101,325 kPa/atm = 4579,89 kPa.T(SO₂) = 293 K.R = 8,314 J/K·mol.Use ideal gas law: p·V = n·R·T.n(SO₂) = p · V ÷ R · T.n(SO₂) = 4579,89 kPa · 5,2 L ÷ 8,314 J/K· mol · 293 K.n(CH₄) = 9,77 mol.There is not enogh SO₂, 225 mol - 9,77 mol = 215,23 mol is needed.
3) p(He) = 3,50 atm · 101,325 kPa/atm = 354,63 kPa.V(He) = 4,00 L.n(He) = 0,410 mol.R = 8,314 J/K·mol.Use ideal gas law: p·V = n·R·T.T = p · V ÷ R · n.T(He) = 354,63 kPa · 4,00 L ÷ 8,314 J/K· mol · 0,410 mol.T(He) = 416,14 K.n - amount of substance.
4) p(Ar) = 1,00 atm · 101,325 kPa/atm = 101,325 kPa.V(Ar) = 3,4 L.T(Ar) = 263 K.R = 8,314 J/K·mol.Use ideal gas law: p·V = n·R·T.n(Ar) = p · V ÷ R · T.n(Ar) = 101,325 kPa · 3,4 L ÷ 8,314 J/K· mol · 263 K.n(Ar) = 0,157 mol.n(Ar) = 0,157 mol + 2,5 mol = 2,657 mol.p(Ar) = 2,657 mol · 8,314 J/K· mol · 263 K ÷ 3,4 L.p(Ar) = 1708,74 kPa.
Answer:
2200 g
Explanation:
Data Given:
no. of moles of Ba₃N₂ = 5 moles
mass of Ba₃N₂ = ?
Solution:
Formula used
no. of moles = mass in grams / molar mass
To find mass rearrange the above equation:
mass in grams = no. of moles x molar mass. . . . . . (1)
molar mass of Ba₃N₂
molar mass of Ba₃N₂ = 3(137.3) + 2(14)
molar mass of Ba₃N₂ = 412 + 28
molar mass of Ba₃N₂ = 440 g/mol
Put values in equation 1
mass in grams = 5 moles x 440 g/mol
mass in grams = 2200 g
So,
mass of Ba₃N₂ = 2200 g