Answer:
B. Ionic Compound
Explanation:
An ionic compound is that compound which contains a positively charged ion called CATION and a negatively charged ion called ANION. The cation loses or transfers electrons to the anion, hence, making the former (cation) positive and the latter (anion) negative.
A polyatomic ion is an ion that contains more than one type of atom e.g OH-, NO3²-, CO3²- etc. A polyatomic ion usually has an overall charge formed from the charges of the individual atoms that makes it up. For example, in OH-, the overall charge is -1.
Since a polyatomic ion can have an overall positive or negative charge, it must enter a reaction with another ion that complements it i.e. a negative polyatomic ion will react with a positive ion to neutralize its charge. Hence, this forms an IONIC COMPOUND. This is why most compounds with polyatomic ions are IONIC COMPOUNDS.
For example, CaCO3 is an ionic compound formed when Ca²+ (cation) reacts with the polyatomic anion: CO3²-
To identify a precipitation reaction and predict solubilities. ... solution of potassium dichromate to give a reddish precipitate of ... When aqueous solutions of silver nitrate and potassium dichromate are ...
Missing: AgNO2+
Initial volume of the balloon =
= 348 mL
Initial temperature of the balloon
= 
Final volume of the balloon
= 322 mL
Final temperature of the balloon = 
According to Charles law, volume of an ideal gas is directly proportional to the temperature at constant pressure.

On plugging in the values,


Therefore, the temperature of the freezer is 276 K
<h3>Answer:</h3>
The New pressure (750 mmHg) is greater than the original pressure (500 mmHg) hence, the new volume (6.0 mL) is smaller than the original volume (9.0 mL).
<h3>Solution:</h3>
According to Boyle's Law, " <em>The Volume of a given mass of gas at constant temperature is inversely proportional to the applied Pressure</em>". Mathematically, the initial and final states of gas are given as,
P₁ V₁ = P₂ V₂ ----------- (1)
Data Given;
P₁ = 500 mmHg
V₁ = 9.0 mL
P₂ = 750 mmHg
V₂ = ??
Solving equation 1 for V₂,
V₂ = P₁ V₁ / P₂
Putting values,
V₂ = (500 mmHg × 9.0 mL) ÷ 750 mmHg
V₂ = 6.0 mL
<h3>Result:</h3>
The New pressure (750 mmHg) is greater than the original pressure (500 mmHg) hence, the new volume (6.0 mL) is smaller than the original volume (9.0 mL).
Explanation:
a chemical reaction that absorbs energy is known to be endothermic since heat is being taken in by the reaction. The value of the transition state would be 150 because you have to subtract the product's enthalpy and the reactant's enthalpy to obtain it. A positive value for the transition state also corroborates that the reaction is endothermic.