Answer:
0.87 pg
Explanation:
<em>GenAlex Medical, a leading manufacturer of medical laboratory equipment, is designing a new automated system that can detect normal levels of dissolved triiodothyronine (230. to 660 pg/dL), using a blood sample that is as small as 380 μL. Calculate the minimum mass in picograms of triiodothyronine that the new system must be able to detect. Be sure your answer has the correct number of significant digits.</em>
Step 1: Convert 380 μL to deciliters
We will use the following conversion factors.
380 μL × 1 L/10⁶ μL × 10 dL/1 L = 3.8 × 10⁻³ L
Step 2: Calculate the minimum mass of triiodothyronine that can be found in a 3.8 × 10⁻³ L blood sample
Since we are looking for the minimum mass, we will use the lower limit of the concentration interval (230. pg/dL).
3.8 × 10⁻³ L × 230. pg/dL = 0.87 pg
Could be separated by distillation.
Answer : The molar mass of the unknown gas will be 79.7 g/mol
Explanation : To solve this question we can use graham's law;
Now we can use nitrogen as the gas number 2, which travels faster than gas 1;
So, 167 / 99 = 1.687 So the nitrogen gas is 1.687 times faster that the unknown gas 1
We can compare the rates of both the gases;
So here, Rate of gas 2 / Rate of gas 1 =
Now, 1.687 = square root [
]
When we square both the sides we get;
2.845 = (molar mass 1) / (28.01 g/mol N2)
On rearranging, we get,
2.845 X (28.01 g/mol N2) = Molar mass 1
So the molar mass of unknown gas will be = 79.7 g/mol
Answer:
did you have options, cause if you did chose something alond the lines of
Explanation:
A real gas is a gas that does not behave as an ideal gas due to interactions between gas molecules. A real gas is also known as a nonideal gas because the behavior of a real gas in only approximated by the ideal gas law.