The brightness of the lamp is proportional to the current flowing through the lamp: the larger the current, the brighter the lamp.
The current flowing through the lamp is given by Ohm's law:

where
V is the potential difference across the lamp, which is equal to the emf of the battery, and R is the resistance of the lamp.
The problem says that the battery is replaced with one with lower emf. Looking at the formula, this means that V decreases: if we want to keep the same brightness, we need to keep I constant, therefore we need to decrease R, the resistance of the lamp.
Happy Holidays!
Recall that:
Impulse = Change in Momentum = mass × change in velocity
Since both cars are identical and have the same initial velocity of 60 mph, them breaking to a stop means that they both experience the same change in velocity.
Thus, both of the cars' impulses are equal.
Answer:
(a) the electrical power generated for still summer day is 1013.032 W
(b)the electrical power generated for a breezy winter day is 1270.763 W
Explanation:
Given;
Area of panel = 2 m × 4 m, = 8m²
solar flux GS = 700 W/m²
absorptivity of the panel, αS = 0.83
efficiency of conversion, η = P/αSGSA = 0.553 − 0.001 K⁻¹ Tp
panel emissivity , ε = 0.90
Apply energy balance equation to determine he electrical power generated;
transferred energy + generated energy = 0
(radiation + convection) + generated energy = 0
![[\alpha_sG_s-\epsilon \alpha(T_p^4-T_s^4)]-h(T_p-T_\infty) - \eta \alpha_s G_s = 0](https://tex.z-dn.net/?f=%5B%5Calpha_sG_s-%5Cepsilon%20%5Calpha%28T_p%5E4-T_s%5E4%29%5D-h%28T_p-T_%5Cinfty%29%20-%20%5Ceta%20%5Calpha_s%20G_s%20%3D%200)
![[\alpha_sG_s-\epsilon \alpha(T_p^4-T_s^4)]-h(T_p-T_\infty) - (0.553-0.001T_p)\alpha_s G_s](https://tex.z-dn.net/?f=%5B%5Calpha_sG_s-%5Cepsilon%20%5Calpha%28T_p%5E4-T_s%5E4%29%5D-h%28T_p-T_%5Cinfty%29%20-%20%280.553-0.001T_p%29%5Calpha_s%20G_s)
(a) the electrical power generated for still summer day

![[0.83*700-0.9*5.67*10^{-8}(T_p_1^4-308^4)]-10(T_p_1-308) - (0.553-0.001T_p_1)0.83*700 = 0\\\\3798.94-5.103*10^{-8}T_p_1^4 - 9.419T_p_1 = 0\\\\Apply \ \ iteration \ method \ to \ solve \ for \ T_p_1\\\\T_p_1 = 335.05 \ k](https://tex.z-dn.net/?f=%5B0.83%2A700-0.9%2A5.67%2A10%5E%7B-8%7D%28T_p_1%5E4-308%5E4%29%5D-10%28T_p_1-308%29%20-%20%280.553-0.001T_p_1%290.83%2A700%20%3D%200%5C%5C%5C%5C3798.94-5.103%2A10%5E%7B-8%7DT_p_1%5E4%20-%209.419T_p_1%20%3D%200%5C%5C%5C%5CApply%20%5C%20%20%5C%20iteration%20%5C%20method%20%5C%20to%20%5C%20solve%20%5C%20for%20%5C%20T_p_1%5C%5C%5C%5CT_p_1%20%3D%20335.05%20%5C%20k)

(b)the electrical power generated for a breezy winter day

![[0.83*700-0.9*5.67*10^{-8}(T_p_2^4-258^4)]-10(T_p_2-258) - (0.553-0.001T_p_2)0.83*700 = 0\\\\8225.81-5.103*10^{-8}T_p_2^4 - 29.419T_p_2 = 0\\\\Apply \ \ iteration \ method \ to \ solve \ for \ T_p_2\\\\T_p_2 = 279.6 \ k](https://tex.z-dn.net/?f=%5B0.83%2A700-0.9%2A5.67%2A10%5E%7B-8%7D%28T_p_2%5E4-258%5E4%29%5D-10%28T_p_2-258%29%20-%20%280.553-0.001T_p_2%290.83%2A700%20%3D%200%5C%5C%5C%5C8225.81-5.103%2A10%5E%7B-8%7DT_p_2%5E4%20-%2029.419T_p_2%20%3D%200%5C%5C%5C%5CApply%20%5C%20%20%5C%20iteration%20%5C%20method%20%5C%20to%20%5C%20solve%20%5C%20for%20%5C%20T_p_2%5C%5C%5C%5CT_p_2%20%3D%20279.6%20%5C%20k)

Answer:
During those 3.00 seconds before stopping, the car travels a distance of 6 m.
Explanation:
The simple rule of three is a tool that is used to quickly solve problems, where three pieces of information must be known, and one of them operates as an unknown to be known.
Two magnitudes are directly proportional if one magnitude increases the other also does it, and if the magnitude decreases the other in the same way.
Being a, b and c known data and x the unknown, the value that we want to know, the rule of three when the magnitudes are directly proportional is applied as follows:
a ⇒ b
c ⇒ x
So: 
In this case, knowing that a truck travels at 2 m/s, the rule of three applies as follows: if in 1 second the truck travels 2 m, in 3 seconds how much distance does it travel?

distance= 6 m
<u><em>
During those 3.00 seconds before stopping, the car travels a distance of 6 m.</em></u>
Answer:
A. More than 20% of your daily recommended amount.
Explanation:
Reading food labels can be tricky. The percent daily value listed on the right of all food labels lets you know what percent out of the recommended daily intake of each nutrient you are consuming in that specific food.
To check if the food you're consuming is a good source of that nutrient you need in higher amount, the nutrient must be labeled 20% or higher.
The rule used here is called the 5/20 rule. According to this rule, A nutrient that is 5% or below is considered less and a nutrient which is labeled 20% or higher is considered good enough in that food source.