Answer: No
Explanation: Once you bounce the ball it will go higher and then it will slowly come back down
Answer:
The atomic number of Aluminum is "13"!
Explanation:
The 27 means the atomic mass is 27 . The number of protons plus the number of neutrons is 27. That means the number of neutrons is 27–13=14. Number of neutrons depends on the isotopic form of aluminium.
Answer: 
Explanation:
Let's begin by explaining that according to Kepler’s Third Law of Planetary motion “The square of the orbital period
of a planet is proportional to the cube of the semi-major axis
of its orbit”:
(1)
Now, if
is measured in years (Earth years), and
is measured in astronomical units (equivalent to the distance between the Sun and the Earth:
), equation (1) becomes:
(2)
So, knowing
and isolating
from (2) we have:
(3)
(4)
Finally:
T
his is the distance between the dwarf planet and the Sun in astronomical units
Converting this to kilometers, we have:

False. An Electromagnetic induction is the production of an electromotive force across an electrical conductor in a changing magnetic field.
Answer:
vb = 22.13 m/s
So, the only thing that was measured here was the height of point A relative to point B. And the Law of Conservation of Energy was used.
Explanation:
In order to find the speed of roller coaster at Point B, we will use the law of conservation of Energy. In this situation, the law of conservation of energy states that:
K.E at A + P.E at A = K.E at B + P.E at B
(1/2)mvₐ² + mghₐ = (1/2)m(vb)² + mg(hb)
(1/2)vₙ² + ghₐ = (1/2)(vb)² + g(hb)
where,
vₙ = velocity of roller coaster at point a = 0 m/s
hₙ = height of roller coaster at point a = 25 m
g = 9.8 m/s²
vb = velocity of roller coaster at point B = ?
hb = Height of Point B = 0 m (since, point is the reference point)
Therefore,
(1/2)(0 m/s)² + (9.8 m/s²)(25 m) = (1/2)(vb)² + (9.8 m/s²)(0 m)
245 m²/s² * 2 = vb²
vb = √(490 m²/s²)
<u>vb = 22.13 m/s</u>
<u>So, the only thing that was measured here was the height of point A relative to point B. And the Law of Conservation of Energy was used.</u>