1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yan [13]
2 years ago
9

Can you please help me​

Physics
1 answer:
g100num [7]2 years ago
7 0

Answer: Hello Miko here to help!

Explanation: The answer is c!

You might be interested in
A mover loads a 100 kg box into the back of a moving truck by
NeX [460]

Answer:

2.7

Explanation:

The following data were obtained from the question:

Mass (m) of box = 100 Kg

Length (L) of ramp = 4 m

Height (H) of ramp = 1.5 m

Mechanical advantage (MA) of ramp =?

Mechanical advantage of a ramp is simply defined as the ratio of the length of the ramp to the height of the ramp. Mathematically, it is given by:

Mechanical Advantage = Lenght / height

MA= L/H

With the above formula, we can obtain the mechanical advantage of the ramp as follow:

Length (L) of ramp = 4 m

Height (H) of ramp = 1.5 m

Mechanical advantage (MA) of ramp =?

MA = 4/1.5

MA = 2.7

Therefore, the mechanical advantage of the ramp is 2.7

3 0
3 years ago
How long will it take for a boat traveling at 36 k/h to go 126 km?
brilliants [131]
3 hours 30 min i believe because 126/36 is 3.5 and 3.5 hours is 3 hours and 30 min. Brainliest pls
5 0
3 years ago
If you want to play a tune on wine glasses, you’ll need to adjust the oscillation frequencies by adding water to the glasses. Th
jonny [76]

Answer:Reducing mass i.e. water

Explanation:

Frequency For given mass in glass is given by

f=\frac{1}{2\pi }\sqrt{\frac{k}{m}}

where k =stiffness of the glass

m=mass of water in glass

from the above expression we can see that if mass is inversely Proportional to frequency

thus reducing mass we can increase frequency  

6 0
4 years ago
To analyze the motion of a body that is traveling along a curved path, to determine the body's acceleration, velocity, and posit
DiKsa [7]

To solve this problem we will apply the kinematic equations of linear motion and centripetal motion. For this purpose we will be guided by the definitions of centripetal acceleration to relate it to the tangential velocity. With these equations we will also relate the linear velocity for which we will find the points determined by the statement. Our values are given as

R = 350ft

a_t = 1.1ft/s^2

PART A )

a_c = \frac{V^2}{R}

a_c = \frac{V^2}{350}

Calculate the velocity of the motorcycle when the net acceleration of the motorcycle is 5.25ft/s^2

a = \sqrt{a_t^2+a_r^2}

5.25 = \sqrt{(1.1)^2+(\frac{v^2}{350})^2}

27.5625 = 1.21 + \frac{v^4}{122500}

v=42.3877ft/s

Now calculate the angular velocity of the motorcycle

v = r\omega

42.3877 = 350\omega

\omega = 0.1211rad/s

Calculate the angular acceleration of the motorcycle

a_t = r\alpha

1.1 = 350\alpha

\alpha = 3.1428*10^{-3}rad/s^2

Calculate the time needed by the motorcycle to reach an acceleration of

5.25ft/s^2

\omega = \alpha t

0.1211 = 3.1428*10^{-3}t

t = 38.53s

PART B) Calculate the velocity of the motorcycle when the net acceleration of the motorcycle is 6.75ft/s^2

a = \sqrt{a_t^2+a_r^2}

6.75 = \sqrt{(1.1)^2+(\frac{v^2}{350})^2}

45.5625 = 1.21 + \frac{v^4}{122500}

v=48.2796ft/s

PART C)

Calculate the radial acceleration of the motorcycle when the velocity of the motorcycle is 21.5ft/s

a_r = \frac{v^2}{R}

a_r = \frac{21.5^2}{350}

a_r =1.3207ft/s^2

Calculate the net acceleration of the motorcycle when the velocity of the motorcycle is 21.5ft/s

a = \sqrt{a_t^2+a_r^2}

a = \sqrt{(1.1)^2+(1.3207)^2}

a = 1.7187ft/s^2

PART D) Calculate the maximum constant speed of the motorcycle when the maximum acceleration of the motorcycle is 6.75ft/s^2

a = \sqrt{a_t^2+a_r^2}

6.75 = \sqrt{(1.1)^2+(\frac{v^2}{350})^2}

45.5625 = 1.21 + \frac{v^4}{122500}

v=48.2796ft/s

3 0
3 years ago
Use the Venn Diagram to compare and contrast solar and lunar eclipses.
Sergio [31]
From our perspective on Earth, two types of eclipses <span>occur: </span>lunar<span>, the blocking of the </span>Moon<span> by Earth's shadow, and </span>solar, the obstruction of the Sun by the Moon<span>. ... When Earth passes directly </span>between<span> Sun and </span>Moon<span>, its shadow creates a </span>lunar eclipse<span>.</span>
5 0
3 years ago
Other questions:
  • Which resonance form is likely to contribute most to the correct structure of n2o?
    14·1 answer
  • The maximum speed of a mass m on an oscillating spring is vmax . what is the speed of the mass at the instant when the kinetic a
    5·1 answer
  • Which example best illustrates that light behaves like particles?
    12·2 answers
  • A box is being pulled by two ropes. Eduardo pulls to the left with a force of 500 N, and Clara pulls to the right with a force o
    11·2 answers
  • After an ice storm, ice falls from one of the top floors of a 65-story building. The ice falls freely under the influence of gra
    13·1 answer
  • Which of the following statements is TRUE?
    15·2 answers
  • A 0.700-kg particle has a speed of 1.90 m/s at point circled A and kinetic energy of 7.20 J at point circled B. (a) What is its
    7·1 answer
  • 1. Set frequency of wave generator to 5Hz.
    11·1 answer
  • An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.300 rev/s . The magnitude
    6·1 answer
  • Numerical filing method is more scientific why give me 4 reason ​
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!