No, you do not capitalize "is" after "!" unless you are forming a new and complete sentence.
Do not capitilize:
"Hello!" is okay to say.
Capitilize:
"Hello!" Is she okay, she has never greeted us before...
Answer:
The slope is 2
Step-by-step explanation:
Pick two points and plug into this equation: y2-y1/x2-x1
(-3,2) and (-1,6)
2-6/-3-(-1)=-4/-2= 2
Given a complex number in the form:
![z= \rho [\cos \theta + i \sin \theta]](https://tex.z-dn.net/?f=z%3D%20%5Crho%20%5B%5Ccos%20%5Ctheta%20%2B%20i%20%5Csin%20%5Ctheta%5D)
The nth-power of this number,

, can be calculated as follows:
- the modulus of

is equal to the nth-power of the modulus of z, while the angle of

is equal to n multiplied the angle of z, so:
![z^n = \rho^n [\cos n\theta + i \sin n\theta ]](https://tex.z-dn.net/?f=z%5En%20%3D%20%5Crho%5En%20%5B%5Ccos%20n%5Ctheta%20%2B%20i%20%5Csin%20n%5Ctheta%20%5D)
In our case, n=3, so

is equal to
![z^3 = \rho^3 [\cos 3 \theta + i \sin 3 \theta ] = (5^3) [\cos (3 \cdot 330^{\circ}) + i \sin (3 \cdot 330^{\circ}) ]](https://tex.z-dn.net/?f=z%5E3%20%3D%20%5Crho%5E3%20%5B%5Ccos%203%20%5Ctheta%20%2B%20i%20%5Csin%203%20%5Ctheta%20%5D%20%3D%20%285%5E3%29%20%5B%5Ccos%20%283%20%5Ccdot%20330%5E%7B%5Ccirc%7D%29%20%2B%20i%20%5Csin%20%283%20%5Ccdot%20330%5E%7B%5Ccirc%7D%29%20%5D)
(1)
And since

and both sine and cosine are periodic in

, (1) becomes
Answer:
Rotate 90 degrees clockwise around the origin and then translate down. Reflect across the x-axis and then reflect across the y-axis.
Step-by-step explanation:
Reflection across the y-axis. 90o counter clockwise rotation. 2. Multiple-choice. 1 minute. Q. Identify the transformation from ABC to A'B'C'. Draw the final image created by reflecting triangle RST in the x-axis and then rotating the image 90° counterclockwise about the origin. BER goo Clockwise 90c ...C-level G2-1 Reflections and Rotations ... X-axis. 00. G2-2 Rotations. 4. Rotate the figure 90° clockwise around the origin. ... Rotation 90° counter.
-2/3x+3/7=0.5
-2/3x+3/7=5/10
-2/3x+3/7=1/2
-42 x 2x +6 x 3=21
-28x+18=21
-28x=21-18
-28x=3
x=-3/28