To find t<span>he relative maximum value of the function we need to find where the function has its first derivative equal to 0.
Its first derivative is -7*(2x)/(x^2+5)^2
</span>7*(2x)/(x^2+5)^2 =0 the numerator needs to be eqaul to 0
2x=0
x=0
g(0) = 7/5
The <span>relative maximum value is at the point (0, 7/5).</span>
Answer:
f
(
x
)
=
5
x
2
−
2
x
+
3
g
(
x
)
=
4
x
2
+
7
x
−
5
f
(
g
(
x
)
)
=
5
(
4
x
2
+
7
x
−
5
)
2
−
2
(
4
x
2
+
7
x
−
5
)
+
3
=
80
x
4
+
280
x
3
+
45
x
2
−
350
x
+
125
−
8
x
2
−
14
x
+
10
+
3
=
80
x
4
+
280
x
3
+
45
x
2
−
8
x
2
−
350
x
−
14
x
+
125
+
10
+
3
f
(
g
(
x
)
)
=
80
x
4
+
280
x
3
+
37
x
2
−
364
x
+
138
The answer is
f
(
g
(
x
)
)
=
80
x
4
+
280
x
3
+
37
x
2
−
364
x
+
138
.
Step-by-step explanation:
The answer is the 3rd one
is there anther way you can put the pic i cant see