The formula for exponential growth and decay is: In this function, a symbolizes the origin value, such as the starting population or the beginning dosage level. The variable b represents the growth or decay factor. If b > 1, the function signifies exponential growth.
Answer:
.96
Step-by-step explanation:
Answer:
68.26% probability that a randomly selected full-term pregnancy baby's birth weight is between 6.4 and 8.6 pounds
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What is the probability that a randomly selected full-term pregnancy baby's birth weight is between 6.4 and 8.6 pounds
This is the pvalue of Z when X = 8.6 subtracted by the pvalue of Z when X = 6.4. So
X = 8.6



has a pvalue of 0.8413
X = 6.4



has a pvalue of 0.1587
0.8413 - 0.1587 = 0.6826
68.26% probability that a randomly selected full-term pregnancy baby's birth weight is between 6.4 and 8.6 pounds
Answer:
2 stars and 3 points
Step-by-step explanation:
8+2=10
10+4=14
14+6=20
the value increases by 2 each time.
12+3=15
15+6=21
21+9=30
this value is based on multiples of three.
Good luck
Answer:
Number of trucks = 24
Number of SUVs = 24
Step-by-step explanation:
A)
The ratio of cars to trucks is 9:4
The total ratio of cars to trucks is
9+4 = 13
Let x = sum of cars and trucks.
There are 54 cars. Therefore,
x = 54 + t trucks
Number of cars = ratio of cars/ total ratio × sum of cars and trucks. This means,
54 = 9/13 × x
9x / 13 = 54
9x = 13 × 54
9x = 702
x = 702 / 9 = 78
x = 54 + t trucks = number of trucks = 78 = 54 + t trucks
t trucks = 78 - 54 = 24
Number of trucks = 24
B)
The ratio of trucks to SUVs is 12:21
The total ratio of cars to trucks is
12 + 21 = 33
Let y = sum of trucks and SUVs
There are 24 trucks. Therefore,
x = 24 + s SUVs
Number of trucks = ratio of trucks / total ratio × sum of trucks and SUVs. This means,
24 = 12 / 33 × y
12y / 33 = 24
12y = 24 × 33
12y = 792
y = 792 / 12 = 66
y = 24 + s SUVs
66 = 24 + s SUVs
s SUVs = 66 - 24 = 42
Number of SUVs = 24