Answer:
Binomial distribution requires all of the following to be satisfied:
1. size of experiment (N=27) is known.
2. each trial of experiment is Bernoulli trial (i.e. either fail or pass)
3. probability (p=0.14) remains constant through trials.
4. trials are independent, and random.
Binomial distribution can be used as a close approximation, with the usual assumption that a sample of 27 in thousands of stock is representative of the population., and is given by the probability of x successes (defective).
P(x)=C(N,x)*p^x*(1-p)^(n-x)
where N=27, p=0.14, and C(N,x) is the number of combinations of x items out of N.
So we need the probability of <em>at most one defective</em>, which is
P(0)+P(1)
= C(27,0)*0.14^0*(0.86)^(27) + C(27,1)*0.14^1*(0.86^26)
=1*1*0.0170 + 27*0.14*0.0198
=0.0170+0.0749
=0.0919
Answer:

Domain: All Real Numbers
General Formulas and Concepts:
<u>Algebra I</u>
- Domain is the set of x-values that can be inputted into function f(x)
<u>Calculus</u>
The derivative of a constant is equal to 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Chain Rule: ![\frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Derivative: ![\frac{d}{dx} [ln(u)] = \frac{u'}{u}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bln%28u%29%5D%20%3D%20%5Cfrac%7Bu%27%7D%7Bu%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
f(x) = ln(2x² + 1)
<u>Step 2: Differentiate</u>
- Derivative ln(u) [Chain Rule/Basic Power]:

- Simplify:

- Multiply:

<u>Step 3: Domain</u>
We know that we would have issues in the denominator when we have a rational expression. However, we can see that the denominator would never equal 0.
Therefore, our domain would be all real numbers.
We can also graph the differential function to analyze the domain.
Answer:
C I think
Step-by-step explanation:
Slope is rise over run which is -4/15
Answer:
6,300
Step-by-step explanation:
6000+300
expressed as standard form^