The conjugate acid of hydroxylamine it means, CHEBI:15429<span> </span><span>is conjugate acid of </span>aminooxidanide, it means CHEBI:29773.
Answer:
pKa of the histidine = 9.67
Explanation:
The relation between standard Gibbs energy and equilibrium constant is shown below as:
R is Gas constant having value = 0.008314 kJ / K mol
Given temperature, T = 293 K
Given,
So, Applying in the equation as:-
Thus,
Also, considering:-
Given that:- pH = 7.0
So,
<u>pKa of the histidine = 9.67</u>
Answer:
"Freezing point and ability to react with oxygen" are chemical properties
Explanation:
The change of liquid into solid is the freezing point. The melting point is more than the freezing point in certain cases of mixtures for certain organic compounds like fats. As soon as the mixture freezes it becomes solid and which results in change in the composition from the liquid and solid in this way the it drastically reduces the freezing point. The melting point gets higher due to the pressure. This happens due to the release of heat of which results in the rise of temperature to the freezing point
.Also the reaction of elements with oxygen which leads to formation of new substance is also an chemical property
Answer:
0.0177 L of nitrogen will be produced
Explanation:
The decomposition reaction of sodium azide will be:
As per the balanced equation two moles of sodium azide will give three moles of nitrogen gas
The molecular weight of sodium azide = 65 g/mol
The mass of sodium azide used = 100 g
The moles of sodium azide used =
so 1.54 moles of sodium azide will give = mol
the volume will be calculated using ideal gas equation
PV=nRT
Where
P = Pressure = 1.00 atm
V = ?
n = moles = 2.31 mol
R = 0.0821 L atm / mol K
T = 25 °C = 298.15 K
Volume =
Answer:
oxygen is limiting reactant
Explanation:
Given data:
Mass of hydrogen = 16.7 g
Mass of oxygen = 15.4 g
Limiting reactant = ?
Solution:
Chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of hydrogen:
Number of moles = mass/ molar mass
Number of moles = 16.7 g/ 2 g/mol
Number of moles = 8.35 mol
Number of moles of oxygen:
Number of moles = mass/ molar mass
Number of moles = 15.4 g/ 32 g/mol
Number of moles = 0.48 mol
Now we will compare the moles of both reactant with product,
H₂ : H₂O
2 : 2
8.35 : 8.35
O₂ : H₂O
1 : 2
0.48 : 2×0.48 = 0.96 mol
The number of moles of water produced by oxygen are less so it will limiting reactant.