Answer:
The mass of silicon in kilograms in Earth's crust is
.
Explanation:
Mass of Earth =
(1 ton= 2000 lb)
(1 lb =453.6 g)
1 ton = 2000 × 453.6 g =907,200 g
Mass of Earth =
Percentage of earth crust = 0.50%
Mass of earth crust = M


Percentage of the silicon in Earth's crust = 27.2 %
Mass of silicon in in Earth's crust = m



1000 g = 1 kg
The mass of silicon in kilograms in Earth's crust is
.
Answer:
2-ethoxy-2-methylpropan-1-ol
Explanation:
On this reaction, we have an "<u>epoxide"</u> (2-methyl-1,2-epoxypropane). Additionally, we have <u>acid medium</u> (due to the sulfuric acid
). The acid medium will produce the <u>hydronium ion</u> (
). This ion would be attacked by the oxygen of the epoxide. Then a <u>carbocation</u> would be produced, in this case, the most stable carbocation is the <u>tertiary one</u>. Then an <u>ethanol</u> molecule acts as a nucleophile and will attack the carbocation. Finally, a <u>deprotonation </u>step takes place to produce <u>2-ethoxy-2-methylpropan-1-ol</u>.
See figure 1
I hope it helps!
If the temperature of the sample of gas increases to the given value, the volume also increases to 600mL.
<h3>What is Charles's law?</h3>
Charles's law states that "the volume occupied by a definite quantity of gas is directly proportional to its absolute temperature.
It is expressed as;
V₁/T₁ = V₂/T₂
Given the data in the question;
- Initial temperature of gas T₁ = 100K
- Initial volume of gas V₁ = 300mL
- Final temperature T₂ = 200K
V₁/T₁ = V₂/T₂
V₂ = V₁T₂ / T₁
V₂ = ( 300mL × 200K ) / 100K
V₂ = 60000mLK / 100K
V₂ = 600mL
Therefore, if the temperature of the sample of gas increases to the given value, the volume also increases to 600mL.
Learn more about Charles's law here: brainly.com/question/12835309
#SPJ1
When electrons are filling energy levels, the lowest energy sublevels are occupied first. This is Hund's rule.
Hund's rules state that:
Every orbital in a sublevel has to be singularly occupied before any other orbital is able to be doubly occupied.
All of the electrons in single occupied orbitals have to have the same spin to maximize the total spin.
Two German chemists, Justus von Liebig (1803–1873) and Friedrich Wöhler (1800–1882), were responsible for the emergence of organic chemistry in the early nineteenth century. Their quantitative analytical methods helped establish the constitution of newly isolated and synthesized carbon compounds.