Answer:
The reaction of FeBr3/Br2 with benzaldehyde will yield a major product in which the -Br is attached to the benzaldehyde at the meta position.
Explanation:
In chemistry, resonance is a way of describing bonding in certain molecules or ions by the combination of several contributing structures into a resonance hybrid in valence bond theory. Resonance structures often explain the formation of certain major and minor products in organic chemistry reactions.
Aromatic aldehydes and ketones undergo electrophilic substitution reactions such as nitration, sulphonation and halogenation. Since the aldehydic group (-CHO) and ketonic group (-COR or -COAr) are electron-withdrawing, they are deactivating and m-directing.
In benzaldehyde, the ring becomes deactivated at ortho & para positions due to an electron withdrawing aldehyde group. Hence electrophilic substitution is favored at Meta position.
This implies that the reaction of FeBr3/Br2 with benzaldehyde will yield a major product in which the -Br is attached to the benzaldehyde at the meta position.
Answer:

Explanation:
We are given the masses of two reactants and asked to determine the mass of the product.
This looks like a limiting reactant problem.
1. Assemble the information
We will need a balanced equation with masses and molar masses, so let’s gather all the information in one place.
MM: 114.23 32.00 44.01
2C₈H₁₈ + 25O₂ ⟶ 16CO₂ + 18H₂O
Mass/g: 10.3 69.
2. Calculate the moles of each reactant

3. Calculate the moles of CO₂ from each reactant

4. Calculate the mass of CO₂

<u> electrical energy to chemical energy</u>
Answer:
If you add more solute in a saturated solution, it will have no effect. Additional solute does not dissolve in a saturated solution.
Explanation:
If more solute is added and it does not dissolve, then the original solution was saturated. If the added solute dissolves, then the original solution was unsaturated. A solution that has been allowed to reach equilibrium but which has extra undissolved solute at the bottom of the container must be saturated.