<h3>
Answer:</h3>
78.34 g
<h3>
Explanation:</h3>
From the question we are given;
Moles of Nitrogen gas as 2.3 moles
we are required to calculate the mass of NH₃ that may be reproduced.
<h3>Step 1: Writing the balanced equation for the reaction </h3>
The Balanced equation for the reaction is;
N₂(g) + 3H₂(g) → 2NH₃(g)
<h3>Step 2: Calculating the number of moles of NH₃</h3>
From the equation 1 mole of nitrogen gas reacts to produce 2 moles of NH₃
Therefore, the mole ratio of N₂ to NH₃ is 1 : 2
Thus, Moles of NH₃ = Moles of N₂ × 2
= 2.3 moles × 2
= 4.6 moles
<h3>Step 3: Calculating the mass of ammonia produced </h3>
Mass = Moles × molar mass
Molar mass of ammonia gas = 17.031 g/mol
Therefore;
Mass = 4.6 moles × 17.031 g/mol
= 78.3426 g
= 78.34 g
Thus, the mass of NH₃ produced is 78.34 g
Answer:
The strength of electric force depends on the amount of electric charge on the particles and the distance between them. Larger charges or shorter distances result in greater force.
Explanation:
Answer:
Metal has an high capacity, which allows it to heat up faster and transfer the heat to the contents of the pot or pan.
Explanation:
Because metal pots are made from a narrow range of metals because pots and pans need to conduct heat well.
Answer:
C. move left
Explanation:
The object will move towards the left direction due to the unbalanced forces that are acting on it.
The resultant force on the object will be 1N in the left direction
- The resultant force on a body is that singular force that will have the same effect as the different forces that acts on a body
- When forces acts in opposite directions, they are subtracted
- The object will move in the direction of the one with the greater force
So;
Resultant force = 26N - 25N = 1N
The body moves 1N to the left