The answer is d because in both sides there are 1 magnesiums 1 oxygens 2 lithiums and 2 chlorines
Write out the eqn of magnesium and oxygen. this should be under “metals” chapter. do revise.
next, find the mols of both oxygen and magnesium. compare the ratios and find the LIMITING REAGENT.
use the mols of the limiting reagent to compare with the mols of the product.
take the mols of the product/mr of the product.
this will give u the mass.
Answer:
1) acetylide
2) enol
3) aldehydes
4) tautomers
5) alkynes
6) Hydroboration
7) Keto
8) methyl ketones
Explanation:
Acetylide anions (R-C≡C^-) is a strong nucleophile. Being a strong nucleophile, we can use it to open up an epoxide ring by SN2 mechanism. The attack of the acetylide ion occurs from the backside of the epoxide ring. It must attack at the less substituted side of the epoxide.
Oxomercuration of alkynes and hydroboration of alkynes are similar reactions in that they both yield carbonyl compounds that often exhibit keto-enol tautomerism.
The equilibrium position may lie towards the Keto form of the compound. Usually, if terminal alkynes are used, the product of the reaction is a methyl ketone.
Answer:
5.5 L
Explanation:
First we <u>convert 10 g of propane gas</u> (C₃H₈) to moles, using its <em>molar mass</em>:
- 10 g ÷ 44 g/mol = 0.23 mol
Then we <u>use the PV=nRT formula</u>, where:
- P = 1 atm & T = 293 K (This are normal conditions of T and P)
- R = 0.082 atm·L·mol⁻¹·K⁻¹
1 atm * V = 0.23 mol * 0.082 atm·L·mol⁻¹·K⁻¹ * 293 K
Answer:
Robert Boyle
Explanation:
Robert Boyle was an Irish chemist and is famously referred to as the first modern chemist. He was born on the 25th of January, 1627 in Lismore, Ireland and died on the 31st, December 1691, London, United Kingdom.
Robert Boyle was the first to determine the relationship between the pressure and volume of a gas.
Boyles states that when the temperature of an ideal gas is kept constant, the pressure of the gas is inversely proportional to the volume occupied by the gas.
Mathematically, Boyles law is given by;
Where;
V1 and V2 represents the initial and final volumes respectively.
T1 and T2 represents the initial and final temperatures respectively.