By replacing you get:
5*7-2*11+3*(-1) = 35-22-3= 10
so the answer is 10.
If you like my answers, feel free to follow me and ask me more maths problems. :)
1.45 meters is your answer
Answer:

Step-by-step explanation:
Total number of toll-free area codes = 6
A complete number will be of the form:
800-abc-defg
Where abcdefg can be any 7 numbers from 0 to 9. This holds true for all the 6 area codes.
Finding the possible toll free numbers for one area code and multiplying that by 6 will give use the total number of toll free numbers for all 6 area codes.
Considering: 800-abc-defg
The first number "a" can take any digit from 0 to 9. So there are 10 possibilities for this place. Similarly, the second number can take any digit from 0 to 9, so there are 10 possibilities for this place as well and same goes for all the 7 numbers.
Since, there are 10 possibilities for each of the 7 places, according to the fundamental principle of counting, the total possible toll free numbers for one area code would be:
Possible toll free numbers for 1 area code = 10 x 10 x 10 x 10 x 10 x 10 x 10 = 
Since, there are 6 toll-free are codes in total, the total number of toll-free numbers for all 6 area codes = 
Answer:
60 degrees
Step-by-step explanation:
Restructured question:
The measure of two opposite interior angles of a triangle are x−14 and x+4. The exterior angle of the triangle measures 3x-45 . Solve for the measure of the exterior angle.
First you must know that the sum of interior angle of a triangle is equal to the exterior angle
Interior angles = x−14 and x+4
Sum of interior angles = x-14 + x + 4
Sum of interior angles = 2x - 10
Exterior angle = 3x - 45
Equating both:
2x - 10 = 3x - 45
Collect like terms;
2x - 3x = -45 + 10
-x = -35
x = 35
Get the exterior angle:
Exterior angle = 3x - 45
Exterior angle = 3(35) - 45
Exterior angle = 105 - 45
Exterior angle = 60
Hence the measure of the exterior angle is 60 degrees
<em>Note that the functions of the interior and exterior angles are assumed. Same calculation can be employed for any function given</em>