I think that the answer is a hoped i helped
7+4=11 * -9= -99 hope this helped
Answer:
x = -8, x = 5
Step-by-step explanation:
This can be solved using Factorization method:

<h2>
<em>Answer:</em></h2><h2>
<em>1</em><em>3</em><em>1</em><em>.</em><em>9</em><em>6</em><em>4</em><em> </em><em>cm</em></h2>
<em>Solution,</em>
<em>radius=</em><em>2</em><em>1</em><em> </em><em>cm</em>
<em>Circumference</em><em> </em><em>of </em><em>circle</em><em>=</em><em>2</em><em> </em><em>pi </em><em>r</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>2</em><em>*</em><em>3</em><em>.</em><em>1</em><em>4</em><em>2</em><em>*</em><em>2</em><em>1</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>1</em><em>3</em><em>1</em><em>.</em><em>9</em><em>6</em><em>4</em><em> </em><em>cm</em>
<em>hope </em><em>it</em><em> helps</em>
<em>Good </em><em>luck</em><em> on</em><em> your</em><em> assignment</em>
Answer is 8671/6 which is the third choice
===================================
Work Shown:
Find the first term of the sequence by plugging in n = 1
a_n = (5/6)*n + 1/3
a_1 = (5/6)*1 + 1/3 replace n with 1
a_1 = 5/6 + 1/3
a_1 = 5/6 + 2/6
a_1 = 7/6
Repeat for n = 58 to get the 58th term
a_n = (5/6)*n + 1/3
a_58 = (5/6)*58 + 1/3 replace n with 58
a_58 = (5/6)*(58/1) + 1/3
a_58 = (5*58)/(6*1) + 1/3
a_58 = 290/6 + 1/3
a_58 = 145/3 + 1/3
a_58 = 146/3
Now we can use the s_n formula below with n = 58
s_n = (n/2)*(a_1 + a_n)
s_58 = (58/2)*(a_1 + a_58) replace n with 58
s_58 = (58/2)*(7/6 + a_58) replace a_1 with 7/6
s_58 = (58/2)*(7/6 + 146/3) replace a_58 with 146/3
s_58 = (58/2)*(7/6 + 292/6)
s_58 = (58/2)*(299/6)
s_58 = (58*299)/(2*6)
s_58 = 17342/12
s_58 = 8671/6